summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/array_for_matrix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/array_for_matrix.cpp')
-rw-r--r--eigen/test/array_for_matrix.cpp254
1 files changed, 254 insertions, 0 deletions
diff --git a/eigen/test/array_for_matrix.cpp b/eigen/test/array_for_matrix.cpp
new file mode 100644
index 0000000..9667e1f
--- /dev/null
+++ b/eigen/test/array_for_matrix.cpp
@@ -0,0 +1,254 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+template<typename MatrixType> void array_for_matrix(const MatrixType& m)
+{
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
+ typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols);
+
+ ColVectorType cv1 = ColVectorType::Random(rows);
+ RowVectorType rv1 = RowVectorType::Random(cols);
+
+ Scalar s1 = internal::random<Scalar>(),
+ s2 = internal::random<Scalar>();
+
+ // scalar addition
+ VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
+ VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
+ VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
+ m3 = m1;
+ m3.array() += s2;
+ VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
+ m3 = m1;
+ m3.array() -= s1;
+ VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
+
+ // reductions
+ VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm());
+ VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm());
+ VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm());
+ VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm());
+ VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
+
+ // vector-wise ops
+ m3 = m1;
+ VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
+ m3 = m1;
+ VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
+ m3 = m1;
+ VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
+ m3 = m1;
+ VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
+
+ // empty objects
+ VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
+ VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
+
+ // verify the const accessors exist
+ const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
+ const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
+ const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
+ const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
+ VERIFY(&ref_a1 == &ref_m1);
+ VERIFY(&ref_a2 == &ref_m2);
+}
+
+template<typename MatrixType> void comparisons(const MatrixType& m)
+{
+ using std::abs;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ Index r = internal::random<Index>(0, rows-1),
+ c = internal::random<Index>(0, cols-1);
+
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols);
+
+ VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
+ VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
+ if (rows*cols>1)
+ {
+ m3 = m1;
+ m3(r,c) += 1;
+ VERIFY(! (m1.array() < m3.array()).all() );
+ VERIFY(! (m1.array() > m3.array()).all() );
+ }
+
+ // comparisons to scalar
+ VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
+ VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
+ VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
+ VERIFY( (m1.array() == m1(r,c) ).any() );
+ VERIFY( m1.cwiseEqual(m1(r,c)).any() );
+
+ // test Select
+ VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
+ VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
+ Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
+ for (int j=0; j<cols; ++j)
+ for (int i=0; i<rows; ++i)
+ m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
+ VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
+ .select(MatrixType::Zero(rows,cols),m1), m3);
+ // shorter versions:
+ VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
+ .select(0,m1), m3);
+ VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
+ .select(m1,0), m3);
+ // even shorter version:
+ VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
+
+ // count
+ VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
+
+ typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices;
+
+ // TODO allows colwise/rowwise for array
+ VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
+ VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
+}
+
+template<typename VectorType> void lpNorm(const VectorType& v)
+{
+ using std::sqrt;
+ VectorType u = VectorType::Random(v.size());
+
+ VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
+ VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
+ VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
+ VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
+}
+
+template<typename MatrixType> void cwise_min_max(const MatrixType& m)
+{
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ MatrixType m1 = MatrixType::Random(rows, cols);
+
+ // min/max with array
+ Scalar maxM1 = m1.maxCoeff();
+ Scalar minM1 = m1.minCoeff();
+
+ VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
+ VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
+
+ VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
+ VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
+
+ // min/max with scalar input
+ VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
+ VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1));
+ VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1));
+ VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1));
+
+ VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
+ VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1));
+ VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1));
+ VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1));
+
+ VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
+ VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
+
+ VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
+ VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
+
+}
+
+template<typename MatrixTraits> void resize(const MatrixTraits& t)
+{
+ typedef typename MatrixTraits::Index Index;
+ typedef typename MatrixTraits::Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+ typedef Array<Scalar,Dynamic,Dynamic> Array2DType;
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
+ typedef Array<Scalar,Dynamic,1> Array1DType;
+
+ Index rows = t.rows(), cols = t.cols();
+
+ MatrixType m(rows,cols);
+ VectorType v(rows);
+ Array2DType a2(rows,cols);
+ Array1DType a1(rows);
+
+ m.array().resize(rows+1,cols+1);
+ VERIFY(m.rows()==rows+1 && m.cols()==cols+1);
+ a2.matrix().resize(rows+1,cols+1);
+ VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1);
+ v.array().resize(cols);
+ VERIFY(v.size()==cols);
+ a1.matrix().resize(cols);
+ VERIFY(a1.size()==cols);
+}
+
+void regression_bug_654()
+{
+ ArrayXf a = RowVectorXf(3);
+ VectorXf v = Array<float,1,Dynamic>(3);
+}
+
+void test_array_for_matrix()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
+ CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
+ CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( comparisons(Matrix2f()) );
+ CALL_SUBTEST_3( comparisons(Matrix4d()) );
+ CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
+ CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
+ CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( lpNorm(Vector2f()) );
+ CALL_SUBTEST_7( lpNorm(Vector3d()) );
+ CALL_SUBTEST_8( lpNorm(Vector4f()) );
+ CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ }
+ CALL_SUBTEST_6( regression_bug_654() );
+}