diff options
Diffstat (limited to 'eigen/test/basicstuff.cpp')
-rw-r--r-- | eigen/test/basicstuff.cpp | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/eigen/test/basicstuff.cpp b/eigen/test/basicstuff.cpp new file mode 100644 index 0000000..8c0621e --- /dev/null +++ b/eigen/test/basicstuff.cpp @@ -0,0 +1,214 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_NO_STATIC_ASSERT + +#include "main.h" + +template<typename MatrixType> void basicStuff(const MatrixType& m) +{ + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; + + Index rows = m.rows(); + Index cols = m.cols(); + + // this test relies a lot on Random.h, and there's not much more that we can do + // to test it, hence I consider that we will have tested Random.h + MatrixType m1 = MatrixType::Random(rows, cols), + m2 = MatrixType::Random(rows, cols), + m3(rows, cols), + mzero = MatrixType::Zero(rows, cols), + square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); + VectorType v1 = VectorType::Random(rows), + vzero = VectorType::Zero(rows); + SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); + + Scalar x = 0; + while(x == Scalar(0)) x = internal::random<Scalar>(); + + Index r = internal::random<Index>(0, rows-1), + c = internal::random<Index>(0, cols-1); + + m1.coeffRef(r,c) = x; + VERIFY_IS_APPROX(x, m1.coeff(r,c)); + m1(r,c) = x; + VERIFY_IS_APPROX(x, m1(r,c)); + v1.coeffRef(r) = x; + VERIFY_IS_APPROX(x, v1.coeff(r)); + v1(r) = x; + VERIFY_IS_APPROX(x, v1(r)); + v1[r] = x; + VERIFY_IS_APPROX(x, v1[r]); + + VERIFY_IS_APPROX( v1, v1); + VERIFY_IS_NOT_APPROX( v1, 2*v1); + VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); + VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm()); + VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); + VERIFY_IS_APPROX( vzero, v1-v1); + VERIFY_IS_APPROX( m1, m1); + VERIFY_IS_NOT_APPROX( m1, 2*m1); + VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); + VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); + VERIFY_IS_APPROX( mzero, m1-m1); + + // always test operator() on each read-only expression class, + // in order to check const-qualifiers. + // indeed, if an expression class (here Zero) is meant to be read-only, + // hence has no _write() method, the corresponding MatrixBase method (here zero()) + // should return a const-qualified object so that it is the const-qualified + // operator() that gets called, which in turn calls _read(). + VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); + + // now test copying a row-vector into a (column-)vector and conversely. + square.col(r) = square.row(r).eval(); + Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); + Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); + rv = square.row(r); + cv = square.col(r); + + VERIFY_IS_APPROX(rv, cv.transpose()); + + if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) + { + VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); + } + + if(cols!=1 && rows!=1) + { + VERIFY_RAISES_ASSERT(m1[0]); + VERIFY_RAISES_ASSERT((m1+m1)[0]); + } + + VERIFY_IS_APPROX(m3 = m1,m1); + MatrixType m4; + VERIFY_IS_APPROX(m4 = m1,m1); + + m3.real() = m1.real(); + VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); + VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); + + // check == / != operators + VERIFY(m1==m1); + VERIFY(m1!=m2); + VERIFY(!(m1==m2)); + VERIFY(!(m1!=m1)); + m1 = m2; + VERIFY(m1==m2); + VERIFY(!(m1!=m2)); + + // check automatic transposition + sm2.setZero(); + for(typename MatrixType::Index i=0;i<rows;++i) + sm2.col(i) = sm1.row(i); + VERIFY_IS_APPROX(sm2,sm1.transpose()); + + sm2.setZero(); + for(typename MatrixType::Index i=0;i<rows;++i) + sm2.col(i).noalias() = sm1.row(i); + VERIFY_IS_APPROX(sm2,sm1.transpose()); + + sm2.setZero(); + for(typename MatrixType::Index i=0;i<rows;++i) + sm2.col(i).noalias() += sm1.row(i); + VERIFY_IS_APPROX(sm2,sm1.transpose()); + + sm2.setZero(); + for(typename MatrixType::Index i=0;i<rows;++i) + sm2.col(i).noalias() -= sm1.row(i); + VERIFY_IS_APPROX(sm2,-sm1.transpose()); +} + +template<typename MatrixType> void basicStuffComplex(const MatrixType& m) +{ + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; + + Index rows = m.rows(); + Index cols = m.cols(); + + Scalar s1 = internal::random<Scalar>(), + s2 = internal::random<Scalar>(); + + VERIFY(numext::real(s1)==numext::real_ref(s1)); + VERIFY(numext::imag(s1)==numext::imag_ref(s1)); + numext::real_ref(s1) = numext::real(s2); + numext::imag_ref(s1) = numext::imag(s2); + VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); + // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. + + RealMatrixType rm1 = RealMatrixType::Random(rows,cols), + rm2 = RealMatrixType::Random(rows,cols); + MatrixType cm(rows,cols); + cm.real() = rm1; + cm.imag() = rm2; + VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); + VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); + rm1.setZero(); + rm2.setZero(); + rm1 = cm.real(); + rm2 = cm.imag(); + VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); + VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); + cm.real().setZero(); + VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); + VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); +} + +#ifdef EIGEN_TEST_PART_2 +void casting() +{ + Matrix4f m = Matrix4f::Random(), m2; + Matrix4d n = m.cast<double>(); + VERIFY(m.isApprox(n.cast<float>())); + m2 = m.cast<float>(); // check the specialization when NewType == Type + VERIFY(m.isApprox(m2)); +} +#endif + +template <typename Scalar> +void fixedSizeMatrixConstruction() +{ + const Scalar raw[3] = {1,2,3}; + Matrix<Scalar,3,1> m(raw); + Array<Scalar,3,1> a(raw); + VERIFY(m(0) == 1); + VERIFY(m(1) == 2); + VERIFY(m(2) == 3); + VERIFY(a(0) == 1); + VERIFY(a(1) == 2); + VERIFY(a(2) == 3); +} + +void test_basicstuff() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); + CALL_SUBTEST_2( basicStuff(Matrix4d()) ); + CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); + CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + + CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + } + + CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); + CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); + CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); + + CALL_SUBTEST_2(casting()); +} |