summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/cholesky.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/cholesky.cpp')
-rw-r--r--eigen/test/cholesky.cpp404
1 files changed, 404 insertions, 0 deletions
diff --git a/eigen/test/cholesky.cpp b/eigen/test/cholesky.cpp
new file mode 100644
index 0000000..56885de
--- /dev/null
+++ b/eigen/test/cholesky.cpp
@@ -0,0 +1,404 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NO_ASSERTION_CHECKING
+#define EIGEN_NO_ASSERTION_CHECKING
+#endif
+
+static int nb_temporaries;
+
+#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { if(size!=0) nb_temporaries++; }
+
+#include "main.h"
+#include <Eigen/Cholesky>
+#include <Eigen/QR>
+
+#define VERIFY_EVALUATION_COUNT(XPR,N) {\
+ nb_temporaries = 0; \
+ XPR; \
+ if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
+ VERIFY( (#XPR) && nb_temporaries==N ); \
+ }
+
+template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ MatrixType symmLo = symm.template triangularView<Lower>();
+ MatrixType symmUp = symm.template triangularView<Upper>();
+ MatrixType symmCpy = symm;
+
+ CholType<MatrixType,Lower> chollo(symmLo);
+ CholType<MatrixType,Upper> cholup(symmUp);
+
+ for (int k=0; k<10; ++k)
+ {
+ VectorType vec = VectorType::Random(symm.rows());
+ RealScalar sigma = internal::random<RealScalar>();
+ symmCpy += sigma * vec * vec.adjoint();
+
+ // we are doing some downdates, so it might be the case that the matrix is not SPD anymore
+ CholType<MatrixType,Lower> chol(symmCpy);
+ if(chol.info()!=Success)
+ break;
+
+ chollo.rankUpdate(vec, sigma);
+ VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());
+
+ cholup.rankUpdate(vec, sigma);
+ VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
+ }
+}
+
+template<typename MatrixType> void cholesky(const MatrixType& m)
+{
+ typedef typename MatrixType::Index Index;
+ /* this test covers the following files:
+ LLT.h LDLT.h
+ */
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ MatrixType a0 = MatrixType::Random(rows,cols);
+ VectorType vecB = VectorType::Random(rows), vecX(rows);
+ MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
+ SquareMatrixType symm = a0 * a0.adjoint();
+ // let's make sure the matrix is not singular or near singular
+ for (int k=0; k<3; ++k)
+ {
+ MatrixType a1 = MatrixType::Random(rows,cols);
+ symm += a1 * a1.adjoint();
+ }
+
+ // to test if really Cholesky only uses the upper triangular part, uncomment the following
+ // FIXME: currently that fails !!
+ //symm.template part<StrictlyLower>().setZero();
+
+ {
+ SquareMatrixType symmUp = symm.template triangularView<Upper>();
+ SquareMatrixType symmLo = symm.template triangularView<Lower>();
+
+ LLT<SquareMatrixType,Lower> chollo(symmLo);
+ VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
+ vecX = chollo.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+ matX = chollo.solve(matB);
+ VERIFY_IS_APPROX(symm * matX, matB);
+
+ // test the upper mode
+ LLT<SquareMatrixType,Upper> cholup(symmUp);
+ VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
+ vecX = cholup.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+ matX = cholup.solve(matB);
+ VERIFY_IS_APPROX(symm * matX, matB);
+
+ MatrixType neg = -symmLo;
+ chollo.compute(neg);
+ VERIFY(chollo.info()==NumericalIssue);
+
+ VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
+ VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
+ VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU()));
+ VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL()));
+
+ // test some special use cases of SelfCwiseBinaryOp:
+ MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols);
+ m2 = m1;
+ m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB);
+ VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
+ m2 = m1;
+ m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
+ VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
+ m2 = m1;
+ m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB);
+ VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
+ m2 = m1;
+ m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
+ VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
+ }
+
+ // LDLT
+ {
+ int sign = internal::random<int>()%2 ? 1 : -1;
+
+ if(sign == -1)
+ {
+ symm = -symm; // test a negative matrix
+ }
+
+ SquareMatrixType symmUp = symm.template triangularView<Upper>();
+ SquareMatrixType symmLo = symm.template triangularView<Lower>();
+
+ LDLT<SquareMatrixType,Lower> ldltlo(symmLo);
+ VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
+ vecX = ldltlo.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+ matX = ldltlo.solve(matB);
+ VERIFY_IS_APPROX(symm * matX, matB);
+
+ LDLT<SquareMatrixType,Upper> ldltup(symmUp);
+ VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
+ vecX = ldltup.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+ matX = ldltup.solve(matB);
+ VERIFY_IS_APPROX(symm * matX, matB);
+
+ VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
+ VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
+ VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU()));
+ VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()));
+
+ if(MatrixType::RowsAtCompileTime==Dynamic)
+ {
+ // note : each inplace permutation requires a small temporary vector (mask)
+
+ // check inplace solve
+ matX = matB;
+ VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0);
+ VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());
+
+
+ matX = matB;
+ VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0);
+ VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval());
+ }
+
+ // restore
+ if(sign == -1)
+ symm = -symm;
+
+ // check matrices coming from linear constraints with Lagrange multipliers
+ if(rows>=3)
+ {
+ SquareMatrixType A = symm;
+ int c = internal::random<int>(0,rows-2);
+ A.bottomRightCorner(c,c).setZero();
+ // Make sure a solution exists:
+ vecX.setRandom();
+ vecB = A * vecX;
+ vecX.setZero();
+ ldltlo.compute(A);
+ VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
+ vecX = ldltlo.solve(vecB);
+ VERIFY_IS_APPROX(A * vecX, vecB);
+ }
+
+ // check non-full rank matrices
+ if(rows>=3)
+ {
+ int r = internal::random<int>(1,rows-1);
+ Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
+ SquareMatrixType A = a * a.adjoint();
+ // Make sure a solution exists:
+ vecX.setRandom();
+ vecB = A * vecX;
+ vecX.setZero();
+ ldltlo.compute(A);
+ VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
+ vecX = ldltlo.solve(vecB);
+ VERIFY_IS_APPROX(A * vecX, vecB);
+ }
+
+ // check matrices with a wide spectrum
+ if(rows>=3)
+ {
+ RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
+ Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
+ Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows);
+ for(int k=0; k<rows; ++k)
+ d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
+ SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
+ // Make sure a solution exists:
+ vecX.setRandom();
+ vecB = A * vecX;
+ vecX.setZero();
+ ldltlo.compute(A);
+ VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
+ vecX = ldltlo.solve(vecB);
+ VERIFY_IS_APPROX(A * vecX, vecB);
+ }
+ }
+
+ // update/downdate
+ CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm) ));
+ CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) ));
+}
+
+template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
+{
+ // classic test
+ cholesky(m);
+
+ // test mixing real/scalar types
+
+ typedef typename MatrixType::Index Index;
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ RealMatrixType a0 = RealMatrixType::Random(rows,cols);
+ VectorType vecB = VectorType::Random(rows), vecX(rows);
+ MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
+ RealMatrixType symm = a0 * a0.adjoint();
+ // let's make sure the matrix is not singular or near singular
+ for (int k=0; k<3; ++k)
+ {
+ RealMatrixType a1 = RealMatrixType::Random(rows,cols);
+ symm += a1 * a1.adjoint();
+ }
+
+ {
+ RealMatrixType symmLo = symm.template triangularView<Lower>();
+
+ LLT<RealMatrixType,Lower> chollo(symmLo);
+ VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
+ vecX = chollo.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+// matX = chollo.solve(matB);
+// VERIFY_IS_APPROX(symm * matX, matB);
+ }
+
+ // LDLT
+ {
+ int sign = internal::random<int>()%2 ? 1 : -1;
+
+ if(sign == -1)
+ {
+ symm = -symm; // test a negative matrix
+ }
+
+ RealMatrixType symmLo = symm.template triangularView<Lower>();
+
+ LDLT<RealMatrixType,Lower> ldltlo(symmLo);
+ VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
+ vecX = ldltlo.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+// matX = ldltlo.solve(matB);
+// VERIFY_IS_APPROX(symm * matX, matB);
+ }
+}
+
+// regression test for bug 241
+template<typename MatrixType> void cholesky_bug241(const MatrixType& m)
+{
+ eigen_assert(m.rows() == 2 && m.cols() == 2);
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ MatrixType matA;
+ matA << 1, 1, 1, 1;
+ VectorType vecB;
+ vecB << 1, 1;
+ VectorType vecX = matA.ldlt().solve(vecB);
+ VERIFY_IS_APPROX(matA * vecX, vecB);
+}
+
+// LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal.
+// This test checks that LDLT reports correctly that matrix is indefinite.
+// See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736
+template<typename MatrixType> void cholesky_definiteness(const MatrixType& m)
+{
+ eigen_assert(m.rows() == 2 && m.cols() == 2);
+ MatrixType mat;
+ LDLT<MatrixType> ldlt(2);
+
+ {
+ mat << 1, 0, 0, -1;
+ ldlt.compute(mat);
+ VERIFY(!ldlt.isNegative());
+ VERIFY(!ldlt.isPositive());
+ }
+ {
+ mat << 1, 2, 2, 1;
+ ldlt.compute(mat);
+ VERIFY(!ldlt.isNegative());
+ VERIFY(!ldlt.isPositive());
+ }
+ {
+ mat << 0, 0, 0, 0;
+ ldlt.compute(mat);
+ VERIFY(ldlt.isNegative());
+ VERIFY(ldlt.isPositive());
+ }
+ {
+ mat << 0, 0, 0, 1;
+ ldlt.compute(mat);
+ VERIFY(!ldlt.isNegative());
+ VERIFY(ldlt.isPositive());
+ }
+ {
+ mat << -1, 0, 0, 0;
+ ldlt.compute(mat);
+ VERIFY(ldlt.isNegative());
+ VERIFY(!ldlt.isPositive());
+ }
+}
+
+template<typename MatrixType> void cholesky_verify_assert()
+{
+ MatrixType tmp;
+
+ LLT<MatrixType> llt;
+ VERIFY_RAISES_ASSERT(llt.matrixL())
+ VERIFY_RAISES_ASSERT(llt.matrixU())
+ VERIFY_RAISES_ASSERT(llt.solve(tmp))
+ VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp))
+
+ LDLT<MatrixType> ldlt;
+ VERIFY_RAISES_ASSERT(ldlt.matrixL())
+ VERIFY_RAISES_ASSERT(ldlt.permutationP())
+ VERIFY_RAISES_ASSERT(ldlt.vectorD())
+ VERIFY_RAISES_ASSERT(ldlt.isPositive())
+ VERIFY_RAISES_ASSERT(ldlt.isNegative())
+ VERIFY_RAISES_ASSERT(ldlt.solve(tmp))
+ VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp))
+}
+
+void test_cholesky()
+{
+ int s = 0;
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
+ CALL_SUBTEST_3( cholesky(Matrix2d()) );
+ CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) );
+ CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) );
+ CALL_SUBTEST_4( cholesky(Matrix3f()) );
+ CALL_SUBTEST_5( cholesky(Matrix4d()) );
+ s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
+ CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) );
+ s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
+ CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
+ }
+
+ CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
+ CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
+ CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() );
+ CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() );
+
+ // Test problem size constructors
+ CALL_SUBTEST_9( LLT<MatrixXf>(10) );
+ CALL_SUBTEST_9( LDLT<MatrixXf>(10) );
+
+ TEST_SET_BUT_UNUSED_VARIABLE(s)
+ TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries)
+}