diff options
Diffstat (limited to 'eigen/test/eigen2/eigen2_cholesky.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_cholesky.cpp | 113 |
1 files changed, 113 insertions, 0 deletions
diff --git a/eigen/test/eigen2/eigen2_cholesky.cpp b/eigen/test/eigen2/eigen2_cholesky.cpp new file mode 100644 index 0000000..9c4b6f5 --- /dev/null +++ b/eigen/test/eigen2/eigen2_cholesky.cpp @@ -0,0 +1,113 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. Eigen itself is part of the KDE project. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_NO_ASSERTION_CHECKING +#include "main.h" +#include <Eigen/Cholesky> +#include <Eigen/LU> + +#ifdef HAS_GSL +#include "gsl_helper.h" +#endif + +template<typename MatrixType> void cholesky(const MatrixType& m) +{ + /* this test covers the following files: + LLT.h LDLT.h + */ + int rows = m.rows(); + int cols = m.cols(); + + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; + + MatrixType a0 = MatrixType::Random(rows,cols); + VectorType vecB = VectorType::Random(rows), vecX(rows); + MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); + SquareMatrixType symm = a0 * a0.adjoint(); + // let's make sure the matrix is not singular or near singular + MatrixType a1 = MatrixType::Random(rows,cols); + symm += a1 * a1.adjoint(); + + #ifdef HAS_GSL + if (ei_is_same_type<RealScalar,double>::ret) + { + typedef GslTraits<Scalar> Gsl; + typename Gsl::Matrix gMatA=0, gSymm=0; + typename Gsl::Vector gVecB=0, gVecX=0; + convert<MatrixType>(symm, gSymm); + convert<MatrixType>(symm, gMatA); + convert<VectorType>(vecB, gVecB); + convert<VectorType>(vecB, gVecX); + Gsl::cholesky(gMatA); + Gsl::cholesky_solve(gMatA, gVecB, gVecX); + VectorType vecX(rows), _vecX, _vecB; + convert(gVecX, _vecX); + symm.llt().solve(vecB, &vecX); + Gsl::prod(gSymm, gVecX, gVecB); + convert(gVecB, _vecB); + // test gsl itself ! + VERIFY_IS_APPROX(vecB, _vecB); + VERIFY_IS_APPROX(vecX, _vecX); + + Gsl::free(gMatA); + Gsl::free(gSymm); + Gsl::free(gVecB); + Gsl::free(gVecX); + } + #endif + + { + LDLT<SquareMatrixType> ldlt(symm); + VERIFY(ldlt.isPositiveDefinite()); + // in eigen3, LDLT is pivoting + //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); + ldlt.solve(vecB, &vecX); + VERIFY_IS_APPROX(symm * vecX, vecB); + ldlt.solve(matB, &matX); + VERIFY_IS_APPROX(symm * matX, matB); + } + + { + LLT<SquareMatrixType> chol(symm); + VERIFY(chol.isPositiveDefinite()); + VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint()); + chol.solve(vecB, &vecX); + VERIFY_IS_APPROX(symm * vecX, vecB); + chol.solve(matB, &matX); + VERIFY_IS_APPROX(symm * matX, matB); + } + +#if 0 // cholesky is not rank-revealing anyway + // test isPositiveDefinite on non definite matrix + if (rows>4) + { + SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint(); + LLT<SquareMatrixType> chol(symm); + VERIFY(!chol.isPositiveDefinite()); + LDLT<SquareMatrixType> cholnosqrt(symm); + VERIFY(!cholnosqrt.isPositiveDefinite()); + } +#endif +} + +void test_eigen2_cholesky() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) ); + CALL_SUBTEST_2( cholesky(Matrix2d()) ); + CALL_SUBTEST_3( cholesky(Matrix3f()) ); + CALL_SUBTEST_4( cholesky(Matrix4d()) ); + CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) ); + CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) ); + CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) ); + } +} |