diff options
Diffstat (limited to 'eigen/test/eigen2/eigen2_geometry.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_geometry.cpp | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/eigen/test/eigen2/eigen2_geometry.cpp b/eigen/test/eigen2/eigen2_geometry.cpp new file mode 100644 index 0000000..5140407 --- /dev/null +++ b/eigen/test/eigen2/eigen2_geometry.cpp @@ -0,0 +1,432 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. Eigen itself is part of the KDE project. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <Eigen/Geometry> +#include <Eigen/LU> +#include <Eigen/SVD> + +template<typename Scalar> void geometry(void) +{ + /* this test covers the following files: + Cross.h Quaternion.h, Transform.cpp + */ + + typedef Matrix<Scalar,2,2> Matrix2; + typedef Matrix<Scalar,3,3> Matrix3; + typedef Matrix<Scalar,4,4> Matrix4; + typedef Matrix<Scalar,2,1> Vector2; + typedef Matrix<Scalar,3,1> Vector3; + typedef Matrix<Scalar,4,1> Vector4; + typedef Quaternion<Scalar> Quaternionx; + typedef AngleAxis<Scalar> AngleAxisx; + typedef Transform<Scalar,2> Transform2; + typedef Transform<Scalar,3> Transform3; + typedef Scaling<Scalar,2> Scaling2; + typedef Scaling<Scalar,3> Scaling3; + typedef Translation<Scalar,2> Translation2; + typedef Translation<Scalar,3> Translation3; + + Scalar largeEps = test_precision<Scalar>(); + if (ei_is_same_type<Scalar,float>::ret) + largeEps = 1e-2f; + + Vector3 v0 = Vector3::Random(), + v1 = Vector3::Random(), + v2 = Vector3::Random(); + Vector2 u0 = Vector2::Random(); + Matrix3 matrot1; + + Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); + + // cross product + VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); + Matrix3 m; + m << v0.normalized(), + (v0.cross(v1)).normalized(), + (v0.cross(v1).cross(v0)).normalized(); + VERIFY(m.isUnitary()); + + // Quaternion: Identity(), setIdentity(); + Quaternionx q1, q2; + q2.setIdentity(); + VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); + q1.coeffs().setRandom(); + VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); + + // unitOrthogonal + VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); + VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); + VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); + VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); + + + VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); + VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); + VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); + m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); + VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); + VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); + + q1 = AngleAxisx(a, v0.normalized()); + q2 = AngleAxisx(a, v1.normalized()); + + // angular distance + Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); + if (refangle>Scalar(M_PI)) + refangle = Scalar(2)*Scalar(M_PI) - refangle; + + if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) + { + VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); + } + + // rotation matrix conversion + VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); + VERIFY_IS_APPROX(q1 * q2 * v2, + q1.toRotationMatrix() * q2.toRotationMatrix() * v2); + + VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( + q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); + + q2 = q1.toRotationMatrix(); + VERIFY_IS_APPROX(q1*v1,q2*v1); + + matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) + * AngleAxisx(Scalar(0.2), Vector3::UnitY()) + * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); + VERIFY_IS_APPROX(matrot1 * v1, + AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() + * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() + * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); + + // angle-axis conversion + AngleAxisx aa = q1; + VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); + VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); + + // from two vector creation + VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); + VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); + + // inverse and conjugate + VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); + VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); + + // AngleAxis + VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), + Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); + + AngleAxisx aa1; + m = q1.toRotationMatrix(); + aa1 = m; + VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), + Quaternionx(m).toRotationMatrix()); + + // Transform + // TODO complete the tests ! + a = 0; + while (ei_abs(a)<Scalar(0.1)) + a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); + q1 = AngleAxisx(a, v0.normalized()); + Transform3 t0, t1, t2; + // first test setIdentity() and Identity() + t0.setIdentity(); + VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); + t0.matrix().setZero(); + t0 = Transform3::Identity(); + VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); + + t0.linear() = q1.toRotationMatrix(); + t1.setIdentity(); + t1.linear() = q1.toRotationMatrix(); + + v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5)); + t0.scale(v0); + t1.prescale(v0); + + VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); + //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); + + t0.setIdentity(); + t1.setIdentity(); + v1 << 1, 2, 3; + t0.linear() = q1.toRotationMatrix(); + t0.pretranslate(v0); + t0.scale(v1); + t1.linear() = q1.conjugate().toRotationMatrix(); + t1.prescale(v1.cwise().inverse()); + t1.translate(-v0); + + VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>())); + + t1.fromPositionOrientationScale(v0, q1, v1); + VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); + VERIFY_IS_APPROX(t1*v1, t0*v1); + + t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); + t1.setIdentity(); t1.scale(v0).rotate(q1); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); + VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); + + // More transform constructors, operator=, operator*= + + Matrix3 mat3 = Matrix3::Random(); + Matrix4 mat4; + mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); + Transform3 tmat3(mat3), tmat4(mat4); + tmat4.matrix()(3,3) = Scalar(1); + VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); + + Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); + Vector3 v3 = Vector3::Random().normalized(); + AngleAxisx aa3(a3, v3); + Transform3 t3(aa3); + Transform3 t4; + t4 = aa3; + VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); + t4.rotate(AngleAxisx(-a3,v3)); + VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); + t4 *= aa3; + VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); + + v3 = Vector3::Random(); + Translation3 tv3(v3); + Transform3 t5(tv3); + t4 = tv3; + VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); + t4.translate(-v3); + VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); + t4 *= tv3; + VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); + + Scaling3 sv3(v3); + Transform3 t6(sv3); + t4 = sv3; + VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); + t4.scale(v3.cwise().inverse()); + VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); + t4 *= sv3; + VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); + + // matrix * transform + VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix()); + + // chained Transform product + VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); + + // check that Transform product doesn't have aliasing problems + t5 = t4; + t5 = t5*t5; + VERIFY_IS_APPROX(t5, t4*t4); + + // 2D transformation + Transform2 t20, t21; + Vector2 v20 = Vector2::Random(); + Vector2 v21 = Vector2::Random(); + for (int k=0; k<2; ++k) + if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); + t21.setIdentity(); + t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); + VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), + t21.pretranslate(v20).scale(v21).matrix()); + + t21.setIdentity(); + t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); + VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) + * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); + + // Transform - new API + // 3D + t0.setIdentity(); + t0.rotate(q1).scale(v0).translate(v0); + // mat * scaling and mat * translation + t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + // mat * transformation and scaling * translation + t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + t0.setIdentity(); + t0.prerotate(q1).prescale(v0).pretranslate(v0); + // translation * scaling and transformation * mat + t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + // scaling * mat and translation * mat + t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + t0.setIdentity(); + t0.scale(v0).translate(v0).rotate(q1); + // translation * mat and scaling * transformation + t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + // transformation * scaling + t0.scale(v0); + t1 = t1 * Scaling3(v0); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + // transformation * translation + t0.translate(v0); + t1 = t1 * Translation3(v0); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + // translation * transformation + t0.pretranslate(v0); + t1 = Translation3(v0) * t1; + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // transform * quaternion + t0.rotate(q1); + t1 = t1 * q1; + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // translation * quaternion + t0.translate(v1).rotate(q1); + t1 = t1 * (Translation3(v1) * q1); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // scaling * quaternion + t0.scale(v1).rotate(q1); + t1 = t1 * (Scaling3(v1) * q1); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // quaternion * transform + t0.prerotate(q1); + t1 = q1 * t1; + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // quaternion * translation + t0.rotate(q1).translate(v1); + t1 = t1 * (q1 * Translation3(v1)); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // quaternion * scaling + t0.rotate(q1).scale(v1); + t1 = t1 * (q1 * Scaling3(v1)); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + + // translation * vector + t0.setIdentity(); + t0.translate(v0); + VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1); + + // scaling * vector + t0.setIdentity(); + t0.scale(v0); + VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1); + + // test transform inversion + t0.setIdentity(); + t0.translate(v0); + t0.linear().setRandom(); + VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); + t0.setIdentity(); + t0.translate(v0).rotate(q1); + VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse()); + + // test extract rotation and scaling + t0.setIdentity(); + t0.translate(v0).rotate(q1).scale(v1); + VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); + + Matrix3 mat_rotation, mat_scaling; + t0.setIdentity(); + t0.translate(v0).rotate(q1).scale(v1); + t0.computeRotationScaling(&mat_rotation, &mat_scaling); + VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); + VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); + VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); + t0.computeScalingRotation(&mat_scaling, &mat_rotation); + VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); + VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); + VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); + + // test casting + Transform<float,3> t1f = t1.template cast<float>(); + VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); + Transform<double,3> t1d = t1.template cast<double>(); + VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); + + Translation3 tr1(v0); + Translation<float,3> tr1f = tr1.template cast<float>(); + VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); + Translation<double,3> tr1d = tr1.template cast<double>(); + VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); + + Scaling3 sc1(v0); + Scaling<float,3> sc1f = sc1.template cast<float>(); + VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1); + Scaling<double,3> sc1d = sc1.template cast<double>(); + VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1); + + Quaternion<float> q1f = q1.template cast<float>(); + VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); + Quaternion<double> q1d = q1.template cast<double>(); + VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); + + AngleAxis<float> aa1f = aa1.template cast<float>(); + VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); + AngleAxis<double> aa1d = aa1.template cast<double>(); + VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); + + Rotation2D<Scalar> r2d1(ei_random<Scalar>()); + Rotation2D<float> r2d1f = r2d1.template cast<float>(); + VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); + Rotation2D<double> r2d1d = r2d1.template cast<double>(); + VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); + + m = q1; +// m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized(); +// m.col(0) = Vector3(-1,0,0).normalized(); +// m.col(2) = m.col(0).cross(m.col(1)); + #define VERIFY_EULER(I,J,K, X,Y,Z) { \ + Vector3 ea = m.eulerAngles(I,J,K); \ + Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ + VERIFY_IS_APPROX(m, m1); \ + VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ + } + VERIFY_EULER(0,1,2, X,Y,Z); + VERIFY_EULER(0,1,0, X,Y,X); + VERIFY_EULER(0,2,1, X,Z,Y); + VERIFY_EULER(0,2,0, X,Z,X); + + VERIFY_EULER(1,2,0, Y,Z,X); + VERIFY_EULER(1,2,1, Y,Z,Y); + VERIFY_EULER(1,0,2, Y,X,Z); + VERIFY_EULER(1,0,1, Y,X,Y); + + VERIFY_EULER(2,0,1, Z,X,Y); + VERIFY_EULER(2,0,2, Z,X,Z); + VERIFY_EULER(2,1,0, Z,Y,X); + VERIFY_EULER(2,1,2, Z,Y,Z); + + // colwise/rowwise cross product + mat3.setRandom(); + Vector3 vec3 = Vector3::Random(); + Matrix3 mcross; + int i = ei_random<int>(0,2); + mcross = mat3.colwise().cross(vec3); + VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); + mcross = mat3.rowwise().cross(vec3); + VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); + + +} + +void test_eigen2_geometry() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( geometry<float>() ); + CALL_SUBTEST_2( geometry<double>() ); + } +} |