diff options
Diffstat (limited to 'eigen/test/eigen2/eigen2_inverse.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_inverse.cpp | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/eigen/test/eigen2/eigen2_inverse.cpp b/eigen/test/eigen2/eigen2_inverse.cpp new file mode 100644 index 0000000..ccd24a1 --- /dev/null +++ b/eigen/test/eigen2/eigen2_inverse.cpp @@ -0,0 +1,62 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. Eigen itself is part of the KDE project. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <Eigen/LU> + +template<typename MatrixType> void inverse(const MatrixType& m) +{ + /* this test covers the following files: + Inverse.h + */ + int rows = m.rows(); + int cols = m.cols(); + + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; + + MatrixType m1 = MatrixType::Random(rows, cols), + m2(rows, cols), + identity = MatrixType::Identity(rows, rows); + + while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8) + { + m1 = MatrixType::Random(rows, cols); + } + + m2 = m1.inverse(); + VERIFY_IS_APPROX(m1, m2.inverse() ); + + m1.computeInverse(&m2); + VERIFY_IS_APPROX(m1, m2.inverse() ); + + VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); + + VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); + VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); + + VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); + + // since for the general case we implement separately row-major and col-major, test that + VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); +} + +void test_eigen2_inverse() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); + CALL_SUBTEST_2( inverse(Matrix2d()) ); + CALL_SUBTEST_3( inverse(Matrix3f()) ); + CALL_SUBTEST_4( inverse(Matrix4f()) ); + CALL_SUBTEST_5( inverse(MatrixXf(8,8)) ); + CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) ); + } +} |