summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/eigen2/eigen2_regression.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/eigen2/eigen2_regression.cpp')
-rw-r--r--eigen/test/eigen2/eigen2_regression.cpp136
1 files changed, 136 insertions, 0 deletions
diff --git a/eigen/test/eigen2/eigen2_regression.cpp b/eigen/test/eigen2/eigen2_regression.cpp
new file mode 100644
index 0000000..c68b58d
--- /dev/null
+++ b/eigen/test/eigen2/eigen2_regression.cpp
@@ -0,0 +1,136 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <Eigen/LeastSquares>
+
+template<typename VectorType,
+ typename HyperplaneType>
+void makeNoisyCohyperplanarPoints(int numPoints,
+ VectorType **points,
+ HyperplaneType *hyperplane,
+ typename VectorType::Scalar noiseAmplitude)
+{
+ typedef typename VectorType::Scalar Scalar;
+ const int size = points[0]->size();
+ // pick a random hyperplane, store the coefficients of its equation
+ hyperplane->coeffs().resize(size + 1);
+ for(int j = 0; j < size + 1; j++)
+ {
+ do {
+ hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>();
+ } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5);
+ }
+
+ // now pick numPoints random points on this hyperplane
+ for(int i = 0; i < numPoints; i++)
+ {
+ VectorType& cur_point = *(points[i]);
+ do
+ {
+ cur_point = VectorType::Random(size)/*.normalized()*/;
+ // project cur_point onto the hyperplane
+ Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum();
+ cur_point *= hyperplane->coeffs().coeff(size) / x;
+ } while( cur_point.norm() < 0.5
+ || cur_point.norm() > 2.0 );
+ }
+
+ // add some noise to these points
+ for(int i = 0; i < numPoints; i++ )
+ *(points[i]) += noiseAmplitude * VectorType::Random(size);
+}
+
+template<typename VectorType>
+void check_linearRegression(int numPoints,
+ VectorType **points,
+ const VectorType& original,
+ typename VectorType::Scalar tolerance)
+{
+ int size = points[0]->size();
+ assert(size==2);
+ VectorType result(size);
+ linearRegression(numPoints, points, &result, 1);
+ typename VectorType::Scalar error = (result - original).norm() / original.norm();
+ VERIFY(ei_abs(error) < ei_abs(tolerance));
+}
+
+template<typename VectorType,
+ typename HyperplaneType>
+void check_fitHyperplane(int numPoints,
+ VectorType **points,
+ const HyperplaneType& original,
+ typename VectorType::Scalar tolerance)
+{
+ int size = points[0]->size();
+ HyperplaneType result(size);
+ fitHyperplane(numPoints, points, &result);
+ result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size);
+ typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm();
+ std::cout << ei_abs(error) << " xxx " << ei_abs(tolerance) << std::endl;
+ VERIFY(ei_abs(error) < ei_abs(tolerance));
+}
+
+void test_eigen2_regression()
+{
+ for(int i = 0; i < g_repeat; i++)
+ {
+#ifdef EIGEN_TEST_PART_1
+ {
+ Vector2f points2f [1000];
+ Vector2f *points2f_ptrs [1000];
+ for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
+ Vector2f coeffs2f;
+ Hyperplane<float,2> coeffs3f;
+ makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
+ coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1];
+ coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1];
+ CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f));
+ CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f));
+ CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f));
+ }
+#endif
+#ifdef EIGEN_TEST_PART_2
+ {
+ Vector2f points2f [1000];
+ Vector2f *points2f_ptrs [1000];
+ for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
+ Hyperplane<float,2> coeffs3f;
+ makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
+ CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f));
+ CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f));
+ CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f));
+ }
+#endif
+#ifdef EIGEN_TEST_PART_3
+ {
+ Vector4d points4d [1000];
+ Vector4d *points4d_ptrs [1000];
+ for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]);
+ Hyperplane<double,4> coeffs5d;
+ makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01);
+ CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05));
+ CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01));
+ CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002));
+ }
+#endif
+#ifdef EIGEN_TEST_PART_4
+ {
+ VectorXcd *points11cd_ptrs[1000];
+ for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11);
+ Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11);
+ makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01);
+ CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025));
+ CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006));
+ delete coeffs12cd;
+ for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i];
+ }
+#endif
+ }
+}