diff options
Diffstat (limited to 'eigen/test/eigen2/eigen2_regression.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_regression.cpp | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/eigen/test/eigen2/eigen2_regression.cpp b/eigen/test/eigen2/eigen2_regression.cpp new file mode 100644 index 0000000..c68b58d --- /dev/null +++ b/eigen/test/eigen2/eigen2_regression.cpp @@ -0,0 +1,136 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. Eigen itself is part of the KDE project. +// +// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <Eigen/LeastSquares> + +template<typename VectorType, + typename HyperplaneType> +void makeNoisyCohyperplanarPoints(int numPoints, + VectorType **points, + HyperplaneType *hyperplane, + typename VectorType::Scalar noiseAmplitude) +{ + typedef typename VectorType::Scalar Scalar; + const int size = points[0]->size(); + // pick a random hyperplane, store the coefficients of its equation + hyperplane->coeffs().resize(size + 1); + for(int j = 0; j < size + 1; j++) + { + do { + hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>(); + } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5); + } + + // now pick numPoints random points on this hyperplane + for(int i = 0; i < numPoints; i++) + { + VectorType& cur_point = *(points[i]); + do + { + cur_point = VectorType::Random(size)/*.normalized()*/; + // project cur_point onto the hyperplane + Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum(); + cur_point *= hyperplane->coeffs().coeff(size) / x; + } while( cur_point.norm() < 0.5 + || cur_point.norm() > 2.0 ); + } + + // add some noise to these points + for(int i = 0; i < numPoints; i++ ) + *(points[i]) += noiseAmplitude * VectorType::Random(size); +} + +template<typename VectorType> +void check_linearRegression(int numPoints, + VectorType **points, + const VectorType& original, + typename VectorType::Scalar tolerance) +{ + int size = points[0]->size(); + assert(size==2); + VectorType result(size); + linearRegression(numPoints, points, &result, 1); + typename VectorType::Scalar error = (result - original).norm() / original.norm(); + VERIFY(ei_abs(error) < ei_abs(tolerance)); +} + +template<typename VectorType, + typename HyperplaneType> +void check_fitHyperplane(int numPoints, + VectorType **points, + const HyperplaneType& original, + typename VectorType::Scalar tolerance) +{ + int size = points[0]->size(); + HyperplaneType result(size); + fitHyperplane(numPoints, points, &result); + result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size); + typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm(); + std::cout << ei_abs(error) << " xxx " << ei_abs(tolerance) << std::endl; + VERIFY(ei_abs(error) < ei_abs(tolerance)); +} + +void test_eigen2_regression() +{ + for(int i = 0; i < g_repeat; i++) + { +#ifdef EIGEN_TEST_PART_1 + { + Vector2f points2f [1000]; + Vector2f *points2f_ptrs [1000]; + for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); + Vector2f coeffs2f; + Hyperplane<float,2> coeffs3f; + makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); + coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1]; + coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1]; + CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f)); + CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f)); + CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f)); + } +#endif +#ifdef EIGEN_TEST_PART_2 + { + Vector2f points2f [1000]; + Vector2f *points2f_ptrs [1000]; + for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); + Hyperplane<float,2> coeffs3f; + makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); + CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f)); + CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f)); + CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f)); + } +#endif +#ifdef EIGEN_TEST_PART_3 + { + Vector4d points4d [1000]; + Vector4d *points4d_ptrs [1000]; + for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]); + Hyperplane<double,4> coeffs5d; + makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01); + CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05)); + CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01)); + CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002)); + } +#endif +#ifdef EIGEN_TEST_PART_4 + { + VectorXcd *points11cd_ptrs[1000]; + for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11); + Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11); + makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01); + CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025)); + CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006)); + delete coeffs12cd; + for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i]; + } +#endif + } +} |