diff options
Diffstat (limited to 'eigen/test/geo_quaternion.cpp')
-rw-r--r-- | eigen/test/geo_quaternion.cpp | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/eigen/test/geo_quaternion.cpp b/eigen/test/geo_quaternion.cpp new file mode 100644 index 0000000..1694b32 --- /dev/null +++ b/eigen/test/geo_quaternion.cpp @@ -0,0 +1,284 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <Eigen/Geometry> +#include <Eigen/LU> +#include <Eigen/SVD> + +template<typename T> T bounded_acos(T v) +{ + using std::acos; + using std::min; + using std::max; + return acos((max)(T(-1),(min)(v,T(1)))); +} + +template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) +{ + using std::abs; + typedef typename QuatType::Scalar Scalar; + typedef AngleAxis<Scalar> AA; + + Scalar largeEps = test_precision<Scalar>(); + + Scalar theta_tot = AA(q1*q0.inverse()).angle(); + if(theta_tot>M_PI) + theta_tot = Scalar(2.*M_PI)-theta_tot; + for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) + { + QuatType q = q0.slerp(t,q1); + Scalar theta = AA(q*q0.inverse()).angle(); + VERIFY(abs(q.norm() - 1) < largeEps); + if(theta_tot==0) VERIFY(theta_tot==0); + else VERIFY(abs(theta - t * theta_tot) < largeEps); + } +} + +template<typename Scalar, int Options> void quaternion(void) +{ + /* this test covers the following files: + Quaternion.h + */ + using std::abs; + typedef Matrix<Scalar,3,1> Vector3; + typedef Matrix<Scalar,4,1> Vector4; + typedef Quaternion<Scalar,Options> Quaternionx; + typedef AngleAxis<Scalar> AngleAxisx; + + Scalar largeEps = test_precision<Scalar>(); + if (internal::is_same<Scalar,float>::value) + largeEps = 1e-3f; + + Scalar eps = internal::random<Scalar>() * Scalar(1e-2); + + Vector3 v0 = Vector3::Random(), + v1 = Vector3::Random(), + v2 = Vector3::Random(), + v3 = Vector3::Random(); + + Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)), + b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); + + // Quaternion: Identity(), setIdentity(); + Quaternionx q1, q2; + q2.setIdentity(); + VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); + q1.coeffs().setRandom(); + VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); + + // concatenation + q1 *= q2; + + q1 = AngleAxisx(a, v0.normalized()); + q2 = AngleAxisx(a, v1.normalized()); + + // angular distance + Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); + if (refangle>Scalar(M_PI)) + refangle = Scalar(2)*Scalar(M_PI) - refangle; + + if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) + { + VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); + } + + // rotation matrix conversion + VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); + VERIFY_IS_APPROX(q1 * q2 * v2, + q1.toRotationMatrix() * q2.toRotationMatrix() * v2); + + VERIFY( (q2*q1).isApprox(q1*q2, largeEps) + || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); + + q2 = q1.toRotationMatrix(); + VERIFY_IS_APPROX(q1*v1,q2*v1); + + + // angle-axis conversion + AngleAxisx aa = AngleAxisx(q1); + VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); + + // Do not execute the test if the rotation angle is almost zero, or + // the rotation axis and v1 are almost parallel. + if (abs(aa.angle()) > 5*test_precision<Scalar>() + && (aa.axis() - v1.normalized()).norm() < 1.99 + && (aa.axis() + v1.normalized()).norm() < 1.99) + { + VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); + } + + // from two vector creation + VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); + VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); + VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); + if (internal::is_same<Scalar,double>::value) + { + v3 = (v1.array()+eps).matrix(); + VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); + VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); + } + + // from two vector creation static function + VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); + VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); + VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); + if (internal::is_same<Scalar,double>::value) + { + v3 = (v1.array()+eps).matrix(); + VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); + VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); + } + + // inverse and conjugate + VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); + VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); + + // test casting + Quaternion<float> q1f = q1.template cast<float>(); + VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); + Quaternion<double> q1d = q1.template cast<double>(); + VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); + + // test bug 369 - improper alignment. + Quaternionx *q = new Quaternionx; + delete q; + + q1 = AngleAxisx(a, v0.normalized()); + q2 = AngleAxisx(b, v1.normalized()); + check_slerp(q1,q2); + + q1 = AngleAxisx(b, v1.normalized()); + q2 = AngleAxisx(b+Scalar(M_PI), v1.normalized()); + check_slerp(q1,q2); + + q1 = AngleAxisx(b, v1.normalized()); + q2 = AngleAxisx(-b, -v1.normalized()); + check_slerp(q1,q2); + + q1.coeffs() = Vector4::Random().normalized(); + q2.coeffs() = -q1.coeffs(); + check_slerp(q1,q2); +} + +template<typename Scalar> void mapQuaternion(void){ + typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; + typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; + typedef Map<Quaternion<Scalar> > MQuaternionUA; + typedef Map<const Quaternion<Scalar> > MCQuaternionUA; + typedef Quaternion<Scalar> Quaternionx; + typedef Matrix<Scalar,3,1> Vector3; + typedef AngleAxis<Scalar> AngleAxisx; + + Vector3 v0 = Vector3::Random(), + v1 = Vector3::Random(); + Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); + + EIGEN_ALIGN16 Scalar array1[4]; + EIGEN_ALIGN16 Scalar array2[4]; + EIGEN_ALIGN16 Scalar array3[4+1]; + Scalar* array3unaligned = array3+1; + + MQuaternionA mq1(array1); + MCQuaternionA mcq1(array1); + MQuaternionA mq2(array2); + MQuaternionUA mq3(array3unaligned); + MCQuaternionUA mcq3(array3unaligned); + +// std::cerr << array1 << " " << array2 << " " << array3 << "\n"; + mq1 = AngleAxisx(a, v0.normalized()); + mq2 = mq1; + mq3 = mq1; + + Quaternionx q1 = mq1; + Quaternionx q2 = mq2; + Quaternionx q3 = mq3; + Quaternionx q4 = MCQuaternionUA(array3unaligned); + + VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); + VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); + VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); + #ifdef EIGEN_VECTORIZE + if(internal::packet_traits<Scalar>::Vectorizable) + VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); + #endif + + VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); + VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); + + VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); + VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); + + VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); + VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); + + VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); + VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); + + VERIFY_IS_APPROX(mq1*mq2, q1*q2); + VERIFY_IS_APPROX(mq3*mq2, q3*q2); + VERIFY_IS_APPROX(mcq1*mq2, q1*q2); + VERIFY_IS_APPROX(mcq3*mq2, q3*q2); +} + +template<typename Scalar> void quaternionAlignment(void){ + typedef Quaternion<Scalar,AutoAlign> QuaternionA; + typedef Quaternion<Scalar,DontAlign> QuaternionUA; + + EIGEN_ALIGN16 Scalar array1[4]; + EIGEN_ALIGN16 Scalar array2[4]; + EIGEN_ALIGN16 Scalar array3[4+1]; + Scalar* arrayunaligned = array3+1; + + QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; + QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; + QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; + + q1->coeffs().setRandom(); + *q2 = *q1; + *q3 = *q1; + + VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); + VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); + #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY + if(internal::packet_traits<Scalar>::Vectorizable) + VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); + #endif +} + +template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) +{ + // there's a lot that we can't test here while still having this test compile! + // the only possible approach would be to run a script trying to compile stuff and checking that it fails. + // CMake can help with that. + + // verify that map-to-const don't have LvalueBit + typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; + VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); + VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); + VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); + VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); +} + +void test_geo_quaternion() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); + CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); + CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); + CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); + CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); + CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); + CALL_SUBTEST_5(( quaternionAlignment<float>() )); + CALL_SUBTEST_6(( quaternionAlignment<double>() )); + CALL_SUBTEST_1( mapQuaternion<float>() ); + CALL_SUBTEST_2( mapQuaternion<double>() ); + } +} |