diff options
Diffstat (limited to 'eigen/test/inverse.cpp')
-rw-r--r-- | eigen/test/inverse.cpp | 104 |
1 files changed, 104 insertions, 0 deletions
diff --git a/eigen/test/inverse.cpp b/eigen/test/inverse.cpp new file mode 100644 index 0000000..8187b08 --- /dev/null +++ b/eigen/test/inverse.cpp @@ -0,0 +1,104 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <Eigen/LU> + +template<typename MatrixType> void inverse(const MatrixType& m) +{ + using std::abs; + typedef typename MatrixType::Index Index; + /* this test covers the following files: + Inverse.h + */ + Index rows = m.rows(); + Index cols = m.cols(); + + typedef typename MatrixType::Scalar Scalar; + + MatrixType m1(rows, cols), + m2(rows, cols), + identity = MatrixType::Identity(rows, rows); + createRandomPIMatrixOfRank(rows,rows,rows,m1); + m2 = m1.inverse(); + VERIFY_IS_APPROX(m1, m2.inverse() ); + + VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); + + VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); + VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); + + VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); + + // since for the general case we implement separately row-major and col-major, test that + VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose())); + +#if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6) + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; + + //computeInverseAndDetWithCheck tests + //First: an invertible matrix + bool invertible; + RealScalar det; + + m2.setZero(); + m1.computeInverseAndDetWithCheck(m2, det, invertible); + VERIFY(invertible); + VERIFY_IS_APPROX(identity, m1*m2); + VERIFY_IS_APPROX(det, m1.determinant()); + + m2.setZero(); + m1.computeInverseWithCheck(m2, invertible); + VERIFY(invertible); + VERIFY_IS_APPROX(identity, m1*m2); + + //Second: a rank one matrix (not invertible, except for 1x1 matrices) + VectorType v3 = VectorType::Random(rows); + MatrixType m3 = v3*v3.transpose(), m4(rows,cols); + m3.computeInverseAndDetWithCheck(m4, det, invertible); + VERIFY( rows==1 ? invertible : !invertible ); + VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1)); + m3.computeInverseWithCheck(m4, invertible); + VERIFY( rows==1 ? invertible : !invertible ); +#endif + + // check in-place inversion + if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4) + { + // in-place is forbidden + VERIFY_RAISES_ASSERT(m1 = m1.inverse()); + } + else + { + m2 = m1.inverse(); + m1 = m1.inverse(); + VERIFY_IS_APPROX(m1,m2); + } +} + +void test_inverse() +{ + int s = 0; + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); + CALL_SUBTEST_2( inverse(Matrix2d()) ); + CALL_SUBTEST_3( inverse(Matrix3f()) ); + CALL_SUBTEST_4( inverse(Matrix4f()) ); + CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) ); + s = internal::random<int>(50,320); + CALL_SUBTEST_5( inverse(MatrixXf(s,s)) ); + s = internal::random<int>(25,100); + CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) ); + CALL_SUBTEST_7( inverse(Matrix4d()) ); + CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) ); + } + TEST_SET_BUT_UNUSED_VARIABLE(s) +} |