diff options
Diffstat (limited to 'eigen/test/lu.cpp')
-rw-r--r-- | eigen/test/lu.cpp | 210 |
1 files changed, 210 insertions, 0 deletions
diff --git a/eigen/test/lu.cpp b/eigen/test/lu.cpp new file mode 100644 index 0000000..3746526 --- /dev/null +++ b/eigen/test/lu.cpp @@ -0,0 +1,210 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <Eigen/LU> +using namespace std; + +template<typename MatrixType> void lu_non_invertible() +{ + typedef typename MatrixType::Index Index; + typedef typename MatrixType::RealScalar RealScalar; + /* this test covers the following files: + LU.h + */ + Index rows, cols, cols2; + if(MatrixType::RowsAtCompileTime==Dynamic) + { + rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); + } + else + { + rows = MatrixType::RowsAtCompileTime; + } + if(MatrixType::ColsAtCompileTime==Dynamic) + { + cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); + cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE); + } + else + { + cols2 = cols = MatrixType::ColsAtCompileTime; + } + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime + }; + typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType; + typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType; + typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> + CMatrixType; + typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> + RMatrixType; + + Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); + + // The image of the zero matrix should consist of a single (zero) column vector + VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1)); + + MatrixType m1(rows, cols), m3(rows, cols2); + CMatrixType m2(cols, cols2); + createRandomPIMatrixOfRank(rank, rows, cols, m1); + + FullPivLU<MatrixType> lu; + + // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank + // of singular values are either 0 or 1. + // So it's not clear at all that the epsilon should play any role there. + lu.setThreshold(RealScalar(0.01)); + lu.compute(m1); + + MatrixType u(rows,cols); + u = lu.matrixLU().template triangularView<Upper>(); + RMatrixType l = RMatrixType::Identity(rows,rows); + l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>() + = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols)); + + VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u); + + KernelMatrixType m1kernel = lu.kernel(); + ImageMatrixType m1image = lu.image(m1); + + VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); + VERIFY(rank == lu.rank()); + VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); + VERIFY(!lu.isInjective()); + VERIFY(!lu.isInvertible()); + VERIFY(!lu.isSurjective()); + VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); + VERIFY(m1image.fullPivLu().rank() == rank); + VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image); + + m2 = CMatrixType::Random(cols,cols2); + m3 = m1*m2; + m2 = CMatrixType::Random(cols,cols2); + // test that the code, which does resize(), may be applied to an xpr + m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3); + VERIFY_IS_APPROX(m3, m1*m2); +} + +template<typename MatrixType> void lu_invertible() +{ + /* this test covers the following files: + LU.h + */ + typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; + DenseIndex size = MatrixType::RowsAtCompileTime; + if( size==Dynamic) + size = internal::random<DenseIndex>(1,EIGEN_TEST_MAX_SIZE); + + MatrixType m1(size, size), m2(size, size), m3(size, size); + FullPivLU<MatrixType> lu; + lu.setThreshold(RealScalar(0.01)); + do { + m1 = MatrixType::Random(size,size); + lu.compute(m1); + } while(!lu.isInvertible()); + + VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); + VERIFY(0 == lu.dimensionOfKernel()); + VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector + VERIFY(size == lu.rank()); + VERIFY(lu.isInjective()); + VERIFY(lu.isSurjective()); + VERIFY(lu.isInvertible()); + VERIFY(lu.image(m1).fullPivLu().isInvertible()); + m3 = MatrixType::Random(size,size); + m2 = lu.solve(m3); + VERIFY_IS_APPROX(m3, m1*m2); + VERIFY_IS_APPROX(m2, lu.inverse()*m3); + + // Regression test for Bug 302 + MatrixType m4 = MatrixType::Random(size,size); + VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4); +} + +template<typename MatrixType> void lu_partial_piv() +{ + /* this test covers the following files: + PartialPivLU.h + */ + typedef typename MatrixType::Index Index; + Index rows = internal::random<Index>(1,4); + Index cols = rows; + + MatrixType m1(cols, rows); + m1.setRandom(); + PartialPivLU<MatrixType> plu(m1); + + VERIFY_IS_APPROX(m1, plu.reconstructedMatrix()); +} + +template<typename MatrixType> void lu_verify_assert() +{ + MatrixType tmp; + + FullPivLU<MatrixType> lu; + VERIFY_RAISES_ASSERT(lu.matrixLU()) + VERIFY_RAISES_ASSERT(lu.permutationP()) + VERIFY_RAISES_ASSERT(lu.permutationQ()) + VERIFY_RAISES_ASSERT(lu.kernel()) + VERIFY_RAISES_ASSERT(lu.image(tmp)) + VERIFY_RAISES_ASSERT(lu.solve(tmp)) + VERIFY_RAISES_ASSERT(lu.determinant()) + VERIFY_RAISES_ASSERT(lu.rank()) + VERIFY_RAISES_ASSERT(lu.dimensionOfKernel()) + VERIFY_RAISES_ASSERT(lu.isInjective()) + VERIFY_RAISES_ASSERT(lu.isSurjective()) + VERIFY_RAISES_ASSERT(lu.isInvertible()) + VERIFY_RAISES_ASSERT(lu.inverse()) + + PartialPivLU<MatrixType> plu; + VERIFY_RAISES_ASSERT(plu.matrixLU()) + VERIFY_RAISES_ASSERT(plu.permutationP()) + VERIFY_RAISES_ASSERT(plu.solve(tmp)) + VERIFY_RAISES_ASSERT(plu.determinant()) + VERIFY_RAISES_ASSERT(plu.inverse()) +} + +void test_lu() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() ); + CALL_SUBTEST_1( lu_invertible<Matrix3f>() ); + CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() ); + + CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) ); + CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) ); + + CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() ); + CALL_SUBTEST_3( lu_invertible<MatrixXf>() ); + CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() ); + + CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() ); + CALL_SUBTEST_4( lu_invertible<MatrixXd>() ); + CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() ); + CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() ); + + CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() ); + CALL_SUBTEST_5( lu_invertible<MatrixXcf>() ); + CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() ); + + CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() ); + CALL_SUBTEST_6( lu_invertible<MatrixXcd>() ); + CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() ); + CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() ); + + CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() )); + + // Test problem size constructors + CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) ); + CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); ); + } +} |