diff options
Diffstat (limited to 'eigen/test/nomalloc.cpp')
-rw-r--r-- | eigen/test/nomalloc.cpp | 212 |
1 files changed, 212 insertions, 0 deletions
diff --git a/eigen/test/nomalloc.cpp b/eigen/test/nomalloc.cpp new file mode 100644 index 0000000..8e04023 --- /dev/null +++ b/eigen/test/nomalloc.cpp @@ -0,0 +1,212 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// this hack is needed to make this file compiles with -pedantic (gcc) +#ifdef __GNUC__ +#define throw(X) +#endif + +#ifdef __INTEL_COMPILER + // disable "warning #76: argument to macro is empty" produced by the above hack + #pragma warning disable 76 +#endif + +// discard stack allocation as that too bypasses malloc +#define EIGEN_STACK_ALLOCATION_LIMIT 0 +// any heap allocation will raise an assert +#define EIGEN_NO_MALLOC + +#include "main.h" +#include <Eigen/Cholesky> +#include <Eigen/Eigenvalues> +#include <Eigen/LU> +#include <Eigen/QR> +#include <Eigen/SVD> + +template<typename MatrixType> void nomalloc(const MatrixType& m) +{ + /* this test check no dynamic memory allocation are issued with fixed-size matrices + */ + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + + Index rows = m.rows(); + Index cols = m.cols(); + + MatrixType m1 = MatrixType::Random(rows, cols), + m2 = MatrixType::Random(rows, cols), + m3(rows, cols); + + Scalar s1 = internal::random<Scalar>(); + + Index r = internal::random<Index>(0, rows-1), + c = internal::random<Index>(0, cols-1); + + VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); + VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); + VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); + VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); + + m2.col(0).noalias() = m1 * m1.col(0); + m2.col(0).noalias() -= m1.adjoint() * m1.col(0); + m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); + m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); + + m2.row(0).noalias() = m1.row(0) * m1; + m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); + m2.row(0).noalias() -= m1.col(0).adjoint() * m1; + m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); + VERIFY_IS_APPROX(m2,m2); + + m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); + m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); + m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); + m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); + + m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); + m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); + m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); + m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); + VERIFY_IS_APPROX(m2,m2); + + m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); + m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); + m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); + m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); + + m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); + m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); + m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); + m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); + VERIFY_IS_APPROX(m2,m2); + + m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1); + m2.template selfadjointView<Lower>().rankUpdate(m1.row(0),-1); + + // The following fancy matrix-matrix products are not safe yet regarding static allocation +// m1 += m1.template triangularView<Upper>() * m2.col(; +// m1.template selfadjointView<Lower>().rankUpdate(m2); +// m1 += m1.template triangularView<Upper>() * m2; +// m1 += m1.template selfadjointView<Lower>() * m2; +// VERIFY_IS_APPROX(m1,m1); +} + +template<typename Scalar> +void ctms_decompositions() +{ + const int maxSize = 16; + const int size = 12; + + typedef Eigen::Matrix<Scalar, + Eigen::Dynamic, Eigen::Dynamic, + 0, + maxSize, maxSize> Matrix; + + typedef Eigen::Matrix<Scalar, + Eigen::Dynamic, 1, + 0, + maxSize, 1> Vector; + + typedef Eigen::Matrix<std::complex<Scalar>, + Eigen::Dynamic, Eigen::Dynamic, + 0, + maxSize, maxSize> ComplexMatrix; + + const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); + Matrix X(size,size); + const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); + const Matrix saA = A.adjoint() * A; + const Vector b(Vector::Random(size)); + Vector x(size); + + // Cholesky module + Eigen::LLT<Matrix> LLT; LLT.compute(A); + X = LLT.solve(B); + x = LLT.solve(b); + Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); + X = LDLT.solve(B); + x = LDLT.solve(b); + + // Eigenvalues module + Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA); + Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA); + Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; cEigSolver.compute(complexA); + Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A); + Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA); + Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA); + + // LU module + Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A); + X = ppLU.solve(B); + x = ppLU.solve(b); + Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A); + X = fpLU.solve(B); + x = fpLU.solve(b); + + // QR module + Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A); + X = hQR.solve(B); + x = hQR.solve(b); + Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A); + X = cpQR.solve(B); + x = cpQR.solve(b); + Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A); + // FIXME X = fpQR.solve(B); + x = fpQR.solve(b); + + // SVD module + Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV); +} + +void test_zerosized() { + // default constructors: + Eigen::MatrixXd A; + Eigen::VectorXd v; + // explicit zero-sized: + Eigen::ArrayXXd A0(0,0); + Eigen::ArrayXd v0(std::ptrdiff_t(0)); // FIXME ArrayXd(0) is ambiguous + + // assigning empty objects to each other: + A=A0; + v=v0; +} + +template<typename MatrixType> void test_reference(const MatrixType& m) { + typedef typename MatrixType::Scalar Scalar; + enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; + enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; + typename MatrixType::Index rows = m.rows(), cols=m.cols(); + // Dynamic reference: + typedef Eigen::Ref<const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag > > Ref; + typedef Eigen::Ref<const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> > RefT; + + Ref r1(m); + Ref r2(m.block(rows/3, cols/4, rows/2, cols/2)); + RefT r3(m.transpose()); + RefT r4(m.topLeftCorner(rows/2, cols/2).transpose()); + + VERIFY_RAISES_ASSERT(RefT r5(m)); + VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); + VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); +} + +void test_nomalloc() +{ + // check that our operator new is indeed called: + VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); + CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) ); + CALL_SUBTEST_2(nomalloc(Matrix4d()) ); + CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) ); + + // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) + CALL_SUBTEST_4(ctms_decompositions<float>()); + CALL_SUBTEST_5(test_zerosized()); + CALL_SUBTEST_6(test_reference(Matrix<float,32,32>())); +} |