diff options
Diffstat (limited to 'eigen/test/product_notemporary.cpp')
-rw-r--r-- | eigen/test/product_notemporary.cpp | 150 |
1 files changed, 150 insertions, 0 deletions
diff --git a/eigen/test/product_notemporary.cpp b/eigen/test/product_notemporary.cpp new file mode 100644 index 0000000..5599d26 --- /dev/null +++ b/eigen/test/product_notemporary.cpp @@ -0,0 +1,150 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +static int nb_temporaries; + +inline void on_temporary_creation(int size) { + // here's a great place to set a breakpoint when debugging failures in this test! + if(size!=0) nb_temporaries++; +} + + +#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); } + +#include "main.h" + +#define VERIFY_EVALUATION_COUNT(XPR,N) {\ + nb_temporaries = 0; \ + XPR; \ + if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ + VERIFY( (#XPR) && nb_temporaries==N ); \ + } + +template<typename MatrixType> void product_notemporary(const MatrixType& m) +{ + /* This test checks the number of temporaries created + * during the evaluation of a complex expression */ + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef Matrix<Scalar, 1, Dynamic> RowVectorType; + typedef Matrix<Scalar, Dynamic, 1> ColVectorType; + typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> ColMajorMatrixType; + typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType; + + Index rows = m.rows(); + Index cols = m.cols(); + + ColMajorMatrixType m1 = MatrixType::Random(rows, cols), + m2 = MatrixType::Random(rows, cols), + m3(rows, cols); + RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows); + ColVectorType cv1 = ColVectorType::Random(cols), cvres(cols); + RowMajorMatrixType rm3(rows, cols); + + Scalar s1 = internal::random<Scalar>(), + s2 = internal::random<Scalar>(), + s3 = internal::random<Scalar>(); + + Index c0 = internal::random<Index>(4,cols-8), + c1 = internal::random<Index>(8,cols-c0), + r0 = internal::random<Index>(4,cols-8), + r1 = internal::random<Index>(8,rows-r0); + + VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); + VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).transpose(), 1); + VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0); + + VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()), 1); + VERIFY_EVALUATION_COUNT( m3 = m3 + s1 * (m1 * m2.transpose()), 1); + VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0); + + VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()), 1); + VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()).transpose(), 1); + VERIFY_EVALUATION_COUNT( m3.noalias() = m3 + m1 * m2.transpose(), 1); // 0 in 3.3 + VERIFY_EVALUATION_COUNT( m3.noalias() += m3 + m1 * m2.transpose(), 1); // 0 in 3.3 + VERIFY_EVALUATION_COUNT( m3.noalias() -= m3 + m1 * m2.transpose(), 1); // 0 in 3.3 + + VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0); + VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1); + VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0); + VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0); + VERIFY_EVALUATION_COUNT( m3.noalias() -= s1 * (m1.transpose() * m2), 0); + + VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0); + VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() -= s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1) ), 0); + + // NOTE this is because the Block expression is not handled yet by our expression analyser + VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() = s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1) ), 1); + + VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).template triangularView<Lower>() * m2, 0); + VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1); + VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), 0); + + VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() = (m1 * m2.adjoint()), 0); + VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() -= (m1 * m2.adjoint()), 0); + + // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products + VERIFY_EVALUATION_COUNT( rm3.col(c0).noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * (s2*m2.row(c0)).adjoint(), 1); + + VERIFY_EVALUATION_COUNT( m1.template triangularView<Lower>().solveInPlace(m3), 0); + VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<Lower>().solveInPlace(m3.transpose()), 0); + + VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2*s3).adjoint(), 0); + VERIFY_EVALUATION_COUNT( m3.noalias() = s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<Upper>(), 0); + VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template selfadjointView<Lower>() * m2.adjoint(), 0); + + // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products + VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() = (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2.row(c0)*s3).adjoint(), 1); + VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() -= (s1 * m1).adjoint().template selfadjointView<Upper>() * (-m2.row(c0)*s3).adjoint(), 1); + + VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() += m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * (s1*m2.block(r0,c0,r1,c1)), 0); + VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * m2.block(r0,c0,r1,c1), 0); + + VERIFY_EVALUATION_COUNT( m3.template selfadjointView<Lower>().rankUpdate(m2.adjoint()), 0); + + // Here we will get 1 temporary for each resize operation of the lhs operator; resize(r1,c1) would lead to zero temporaries + m3.resize(1,1); + VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Lower>() * m2.block(r0,c0,r1,c1), 1); + m3.resize(1,1); + VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template triangularView<UnitUpper>() * m2.block(r0,c0,r1,c1), 1); + + // Zero temporaries for lazy products ... + VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) / (m3.transpose().lazyProduct(m3)).diagonal().sum(), 0 ); + + // ... and even no temporary for even deeply (>=2) nested products + VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) / (m3.transpose() * m3).diagonal().sum(), 0 ); + VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) / (m3.transpose() * m3).diagonal().array().abs().sum(), 0 ); + + // Zero temporaries for ... CoeffBasedProductMode + // - does not work with GCC because of the <..>, we'ld need variadic macros ... + //VERIFY_EVALUATION_COUNT( m3.col(0).head<5>() * m3.col(0).transpose() + m3.col(0).head<5>() * m3.col(0).transpose(), 0 ); + + // Check matrix * vectors + VERIFY_EVALUATION_COUNT( cvres.noalias() = m1 * cv1, 0 ); + VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * cv1, 0 ); + VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.col(0), 0 ); + VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * rv1.adjoint(), 0 ); + VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.row(0).transpose(), 0 ); +} + +void test_product_notemporary() +{ + int s; + for(int i = 0; i < g_repeat; i++) { + s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE); + CALL_SUBTEST_1( product_notemporary(MatrixXf(s, s)) ); + s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE); + CALL_SUBTEST_2( product_notemporary(MatrixXd(s, s)) ); + s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2); + CALL_SUBTEST_3( product_notemporary(MatrixXcf(s,s)) ); + s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2); + CALL_SUBTEST_4( product_notemporary(MatrixXcd(s,s)) ); + } +} |