diff options
Diffstat (limited to 'eigen/test/schur_real.cpp')
-rw-r--r-- | eigen/test/schur_real.cpp | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/eigen/test/schur_real.cpp b/eigen/test/schur_real.cpp new file mode 100644 index 0000000..36b9c24 --- /dev/null +++ b/eigen/test/schur_real.cpp @@ -0,0 +1,112 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <limits> +#include <Eigen/Eigenvalues> + +template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T) +{ + typedef typename MatrixType::Index Index; + + const Index size = T.cols(); + typedef typename MatrixType::Scalar Scalar; + + // Check T is lower Hessenberg + for(int row = 2; row < size; ++row) { + for(int col = 0; col < row - 1; ++col) { + VERIFY(T(row,col) == Scalar(0)); + } + } + + // Check that any non-zero on the subdiagonal is followed by a zero and is + // part of a 2x2 diagonal block with imaginary eigenvalues. + for(int row = 1; row < size; ++row) { + if (T(row,row-1) != Scalar(0)) { + VERIFY(row == size-1 || T(row+1,row) == 0); + Scalar tr = T(row-1,row-1) + T(row,row); + Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1); + VERIFY(4 * det > tr * tr); + } + } +} + +template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) +{ + // Test basic functionality: T is quasi-triangular and A = U T U* + for(int counter = 0; counter < g_repeat; ++counter) { + MatrixType A = MatrixType::Random(size, size); + RealSchur<MatrixType> schurOfA(A); + VERIFY_IS_EQUAL(schurOfA.info(), Success); + MatrixType U = schurOfA.matrixU(); + MatrixType T = schurOfA.matrixT(); + verifyIsQuasiTriangular(T); + VERIFY_IS_APPROX(A, U * T * U.transpose()); + } + + // Test asserts when not initialized + RealSchur<MatrixType> rsUninitialized; + VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); + VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); + VERIFY_RAISES_ASSERT(rsUninitialized.info()); + + // Test whether compute() and constructor returns same result + MatrixType A = MatrixType::Random(size, size); + RealSchur<MatrixType> rs1; + rs1.compute(A); + RealSchur<MatrixType> rs2(A); + VERIFY_IS_EQUAL(rs1.info(), Success); + VERIFY_IS_EQUAL(rs2.info(), Success); + VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); + VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); + + // Test maximum number of iterations + RealSchur<MatrixType> rs3; + rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); + VERIFY_IS_EQUAL(rs3.info(), Success); + VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); + VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU()); + if (size > 2) { + rs3.setMaxIterations(1).compute(A); + VERIFY_IS_EQUAL(rs3.info(), NoConvergence); + VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1); + } + + MatrixType Atriangular = A; + Atriangular.template triangularView<StrictlyLower>().setZero(); + rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations + VERIFY_IS_EQUAL(rs3.info(), Success); + VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular); + VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size)); + + // Test computation of only T, not U + RealSchur<MatrixType> rsOnlyT(A, false); + VERIFY_IS_EQUAL(rsOnlyT.info(), Success); + VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); + VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); + + if (size > 2) + { + // Test matrix with NaN + A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); + RealSchur<MatrixType> rsNaN(A); + VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); + } +} + +void test_schur_real() +{ + CALL_SUBTEST_1(( schur<Matrix4f>() )); + CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) )); + CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() )); + CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() )); + + // Test problem size constructors + CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); +} |