summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/stable_norm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/stable_norm.cpp')
-rw-r--r--eigen/test/stable_norm.cpp115
1 files changed, 115 insertions, 0 deletions
diff --git a/eigen/test/stable_norm.cpp b/eigen/test/stable_norm.cpp
new file mode 100644
index 0000000..231dd91
--- /dev/null
+++ b/eigen/test/stable_norm.cpp
@@ -0,0 +1,115 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+// workaround aggressive optimization in ICC
+template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
+
+template<typename T> bool isFinite(const T& x)
+{
+ return isNotNaN(sub(x,x));
+}
+
+template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
+{
+ return x;
+}
+
+template<typename MatrixType> void stable_norm(const MatrixType& m)
+{
+ /* this test covers the following files:
+ StableNorm.h
+ */
+ using std::sqrt;
+ using std::abs;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ // Check the basic machine-dependent constants.
+ {
+ int ibeta, it, iemin, iemax;
+
+ ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
+ it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
+ iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
+ iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
+
+ VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
+ && "the stable norm algorithm cannot be guaranteed on this computer");
+ }
+
+
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ // get a non-zero random factor
+ Scalar factor = internal::random<Scalar>();
+ while(numext::abs2(factor)<RealScalar(1e-4))
+ factor = internal::random<Scalar>();
+ Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
+
+ factor = internal::random<Scalar>();
+ while(numext::abs2(factor)<RealScalar(1e-4))
+ factor = internal::random<Scalar>();
+ Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
+
+ MatrixType vzero = MatrixType::Zero(rows, cols),
+ vrand = MatrixType::Random(rows, cols),
+ vbig(rows, cols),
+ vsmall(rows,cols);
+
+ vbig.fill(big);
+ vsmall.fill(small);
+
+ VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
+ VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm());
+ VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm());
+ VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
+
+ RealScalar size = static_cast<RealScalar>(m.size());
+
+ // test isFinite
+ VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity()));
+ VERIFY(!isFinite(sqrt(-abs(big))));
+
+ // test overflow
+ VERIFY(isFinite(sqrt(size)*abs(big)));
+ VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
+ VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big));
+ VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big));
+ VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big));
+
+ // test underflow
+ VERIFY(isFinite(sqrt(size)*abs(small)));
+ VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail
+ VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small));
+ VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small));
+ VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small));
+
+ // Test compilation of cwise() version
+ VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm());
+ VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm());
+ VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm());
+ VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
+ VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
+ VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
+}
+
+void test_stable_norm()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( stable_norm(Vector4d()) );
+ CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
+ CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
+ CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
+ }
+}