diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h | 805 |
1 files changed, 805 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h b/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h new file mode 100644 index 0000000..3b6a69a --- /dev/null +++ b/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h @@ -0,0 +1,805 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 David Harmon <dharmon@gmail.com> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H +#define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H + +#include <Eigen/Dense> + +namespace Eigen { + +namespace internal { + template<typename Scalar, typename RealScalar> struct arpack_wrapper; + template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP; +} + + + +template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false> +class ArpackGeneralizedSelfAdjointEigenSolver +{ +public: + //typedef typename MatrixSolver::MatrixType MatrixType; + + /** \brief Scalar type for matrices of type \p MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::Index Index; + + /** \brief Real scalar type for \p MatrixType. + * + * This is just \c Scalar if #Scalar is real (e.g., \c float or + * \c Scalar), and the type of the real part of \c Scalar if #Scalar is + * complex. + */ + typedef typename NumTraits<Scalar>::Real RealScalar; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #RealScalar. + * The length of the vector is the size of \p nbrEigenvalues. + */ + typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; + + /** \brief Default constructor. + * + * The default constructor is for cases in which the user intends to + * perform decompositions via compute(). + * + */ + ArpackGeneralizedSelfAdjointEigenSolver() + : m_eivec(), + m_eivalues(), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_nbrConverged(0), + m_nbrIterations(0) + { } + + /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix. + * + * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will + * computed. By default, the upper triangular part is used, but can be changed + * through the template parameter. + * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem. + * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. + * Must be less than the size of the input matrix, or an error is returned. + * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with + * respective meanings to find the largest magnitude , smallest magnitude, + * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this + * value can contain floating point value in string form, in which case the + * eigenvalues closest to this value will be found. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which + * means machine precision. + * + * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar) + * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if + * \p options equals #ComputeEigenvectors. + * + */ + ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B, + Index nbrEigenvalues, std::string eigs_sigma="LM", + int options=ComputeEigenvectors, RealScalar tol=0.0) + : m_eivec(), + m_eivalues(), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_nbrConverged(0), + m_nbrIterations(0) + { + compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); + } + + /** \brief Constructor; computes eigenvalues of given matrix. + * + * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will + * computed. By default, the upper triangular part is used, but can be changed + * through the template parameter. + * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. + * Must be less than the size of the input matrix, or an error is returned. + * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with + * respective meanings to find the largest magnitude , smallest magnitude, + * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this + * value can contain floating point value in string form, in which case the + * eigenvalues closest to this value will be found. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which + * means machine precision. + * + * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar) + * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if + * \p options equals #ComputeEigenvectors. + * + */ + + ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, + Index nbrEigenvalues, std::string eigs_sigma="LM", + int options=ComputeEigenvectors, RealScalar tol=0.0) + : m_eivec(), + m_eivalues(), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_nbrConverged(0), + m_nbrIterations(0) + { + compute(A, nbrEigenvalues, eigs_sigma, options, tol); + } + + + /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library. + * + * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed. + * \param[in] B Selfadjoint matrix for generalized eigenvalues. + * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. + * Must be less than the size of the input matrix, or an error is returned. + * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with + * respective meanings to find the largest magnitude , smallest magnitude, + * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this + * value can contain floating point value in string form, in which case the + * eigenvalues closest to this value will be found. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which + * means machine precision. + * + * \returns Reference to \c *this + * + * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues() + * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, + * then the eigenvectors are also computed and can be retrieved by + * calling eigenvectors(). + * + */ + ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B, + Index nbrEigenvalues, std::string eigs_sigma="LM", + int options=ComputeEigenvectors, RealScalar tol=0.0); + + /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library. + * + * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed. + * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. + * Must be less than the size of the input matrix, or an error is returned. + * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with + * respective meanings to find the largest magnitude , smallest magnitude, + * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this + * value can contain floating point value in string form, in which case the + * eigenvalues closest to this value will be found. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which + * means machine precision. + * + * \returns Reference to \c *this + * + * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues() + * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, + * then the eigenvectors are also computed and can be retrieved by + * calling eigenvectors(). + * + */ + ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, + Index nbrEigenvalues, std::string eigs_sigma="LM", + int options=ComputeEigenvectors, RealScalar tol=0.0); + + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns A const reference to the matrix whose columns are the eigenvectors. + * + * \pre The eigenvectors have been computed before. + * + * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding + * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The + * eigenvectors are normalized to have (Euclidean) norm equal to one. If + * this object was used to solve the eigenproblem for the selfadjoint + * matrix \f$ A \f$, then the matrix returned by this function is the + * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$. + * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$ + * + * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp + * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out + * + * \sa eigenvalues() + */ + const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const + { + eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre The eigenvalues have been computed before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are sorted in increasing order. + * + * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp + * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out + * + * \sa eigenvectors(), MatrixBase::eigenvalues() + */ + const Matrix<Scalar, Dynamic, 1>& eigenvalues() const + { + eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes the positive-definite square root of the matrix. + * + * \returns the positive-definite square root of the matrix + * + * \pre The eigenvalues and eigenvectors of a positive-definite matrix + * have been computed before. + * + * The square root of a positive-definite matrix \f$ A \f$ is the + * positive-definite matrix whose square equals \f$ A \f$. This function + * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the + * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. + * + * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp + * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out + * + * \sa operatorInverseSqrt(), + * \ref MatrixFunctions_Module "MatrixFunctions Module" + */ + Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \brief Computes the inverse square root of the matrix. + * + * \returns the inverse positive-definite square root of the matrix + * + * \pre The eigenvalues and eigenvectors of a positive-definite matrix + * have been computed before. + * + * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to + * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is + * cheaper than first computing the square root with operatorSqrt() and + * then its inverse with MatrixBase::inverse(). + * + * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp + * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out + * + * \sa operatorSqrt(), MatrixBase::inverse(), + * \ref MatrixFunctions_Module "MatrixFunctions Module" + */ + Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); + return m_info; + } + + size_t getNbrConvergedEigenValues() const + { return m_nbrConverged; } + + size_t getNbrIterations() const + { return m_nbrIterations; } + +protected: + Matrix<Scalar, Dynamic, Dynamic> m_eivec; + Matrix<Scalar, Dynamic, 1> m_eivalues; + ComputationInfo m_info; + bool m_isInitialized; + bool m_eigenvectorsOk; + + size_t m_nbrConverged; + size_t m_nbrIterations; +}; + + + + + +template<typename MatrixType, typename MatrixSolver, bool BisSPD> +ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>& + ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD> +::compute(const MatrixType& A, Index nbrEigenvalues, + std::string eigs_sigma, int options, RealScalar tol) +{ + MatrixType B(0,0); + compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); + + return *this; +} + + +template<typename MatrixType, typename MatrixSolver, bool BisSPD> +ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>& + ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD> +::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues, + std::string eigs_sigma, int options, RealScalar tol) +{ + eigen_assert(A.cols() == A.rows()); + eigen_assert(B.cols() == B.rows()); + eigen_assert(B.rows() == 0 || A.cols() == B.rows()); + eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0 + && (options & EigVecMask) != EigVecMask + && "invalid option parameter"); + + bool isBempty = (B.rows() == 0) || (B.cols() == 0); + + // For clarity, all parameters match their ARPACK name + // + // Always 0 on the first call + // + int ido = 0; + + int n = (int)A.cols(); + + // User options: "LA", "SA", "SM", "LM", "BE" + // + char whch[3] = "LM"; + + // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 } + // + RealScalar sigma = 0.0; + + if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) + { + eigs_sigma[0] = toupper(eigs_sigma[0]); + eigs_sigma[1] = toupper(eigs_sigma[1]); + + // In the following special case we're going to invert the problem, since solving + // for larger magnitude is much much faster + // i.e., if 'SM' is specified, we're going to really use 'LM', the default + // + if (eigs_sigma.substr(0,2) != "SM") + { + whch[0] = eigs_sigma[0]; + whch[1] = eigs_sigma[1]; + } + } + else + { + eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!"); + + // If it's not scalar values, then the user may be explicitly + // specifying the sigma value to cluster the evs around + // + sigma = atof(eigs_sigma.c_str()); + + // If atof fails, it returns 0.0, which is a fine default + // + } + + // "I" means normal eigenvalue problem, "G" means generalized + // + char bmat[2] = "I"; + if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD)) + bmat[0] = 'G'; + + // Now we determine the mode to use + // + int mode = (bmat[0] == 'G') + 1; + if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))) + { + // We're going to use shift-and-invert mode, and basically find + // the largest eigenvalues of the inverse operator + // + mode = 3; + } + + // The user-specified number of eigenvalues/vectors to compute + // + int nev = (int)nbrEigenvalues; + + // Allocate space for ARPACK to store the residual + // + Scalar *resid = new Scalar[n]; + + // Number of Lanczos vectors, must satisfy nev < ncv <= n + // Note that this indicates that nev != n, and we cannot compute + // all eigenvalues of a mtrix + // + int ncv = std::min(std::max(2*nev, 20), n); + + // The working n x ncv matrix, also store the final eigenvectors (if computed) + // + Scalar *v = new Scalar[n*ncv]; + int ldv = n; + + // Working space + // + Scalar *workd = new Scalar[3*n]; + int lworkl = ncv*ncv+8*ncv; // Must be at least this length + Scalar *workl = new Scalar[lworkl]; + + int *iparam= new int[11]; + iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it + iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1))); + iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert + + // Used during reverse communicate to notify where arrays start + // + int *ipntr = new int[11]; + + // Error codes are returned in here, initial value of 0 indicates a random initial + // residual vector is used, any other values means resid contains the initial residual + // vector, possibly from a previous run + // + int info = 0; + + Scalar scale = 1.0; + //if (!isBempty) + //{ + //Scalar scale = B.norm() / std::sqrt(n); + //scale = std::pow(2, std::floor(std::log(scale+1))); + ////M /= scale; + //for (size_t i=0; i<(size_t)B.outerSize(); i++) + // for (typename MatrixType::InnerIterator it(B, i); it; ++it) + // it.valueRef() /= scale; + //} + + MatrixSolver OP; + if (mode == 1 || mode == 2) + { + if (!isBempty) + OP.compute(B); + } + else if (mode == 3) + { + if (sigma == 0.0) + { + OP.compute(A); + } + else + { + // Note: We will never enter here because sigma must be 0.0 + // + if (isBempty) + { + MatrixType AminusSigmaB(A); + for (Index i=0; i<A.rows(); ++i) + AminusSigmaB.coeffRef(i,i) -= sigma; + + OP.compute(AminusSigmaB); + } + else + { + MatrixType AminusSigmaB = A - sigma * B; + OP.compute(AminusSigmaB); + } + } + } + + if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success) + std::cout << "Error factoring matrix" << std::endl; + + do + { + internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid, + &ncv, v, &ldv, iparam, ipntr, workd, workl, + &lworkl, &info); + + if (ido == -1 || ido == 1) + { + Scalar *in = workd + ipntr[0] - 1; + Scalar *out = workd + ipntr[1] - 1; + + if (ido == 1 && mode != 2) + { + Scalar *out2 = workd + ipntr[2] - 1; + if (isBempty || mode == 1) + Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n); + else + Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n); + + in = workd + ipntr[2] - 1; + } + + if (mode == 1) + { + if (isBempty) + { + // OP = A + // + Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n); + } + else + { + // OP = L^{-1}AL^{-T} + // + internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out); + } + } + else if (mode == 2) + { + if (ido == 1) + Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n); + + // OP = B^{-1} A + // + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); + } + else if (mode == 3) + { + // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I) + // The B * in is already computed and stored at in if ido == 1 + // + if (ido == 1 || isBempty) + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); + else + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n)); + } + } + else if (ido == 2) + { + Scalar *in = workd + ipntr[0] - 1; + Scalar *out = workd + ipntr[1] - 1; + + if (isBempty || mode == 1) + Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n); + else + Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n); + } + } while (ido != 99); + + if (info == 1) + m_info = NoConvergence; + else if (info == 3) + m_info = NumericalIssue; + else if (info < 0) + m_info = InvalidInput; + else if (info != 0) + eigen_assert(false && "Unknown ARPACK return value!"); + else + { + // Do we compute eigenvectors or not? + // + int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors; + + // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK)) + // + char howmny[2] = "A"; + + // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK) + // + int *select = new int[ncv]; + + // Final eigenvalues + // + m_eivalues.resize(nev, 1); + + internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv, + &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv, + v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info); + + if (info == -14) + m_info = NoConvergence; + else if (info != 0) + m_info = InvalidInput; + else + { + if (rvec) + { + m_eivec.resize(A.rows(), nev); + for (int i=0; i<nev; i++) + for (int j=0; j<n; j++) + m_eivec(j,i) = v[i*n+j] / scale; + + if (mode == 1 && !isBempty && BisSPD) + internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data()); + + m_eigenvectorsOk = true; + } + + m_nbrIterations = iparam[2]; + m_nbrConverged = iparam[4]; + + m_info = Success; + } + + delete select; + } + + delete v; + delete iparam; + delete ipntr; + delete workd; + delete workl; + delete resid; + + m_isInitialized = true; + + return *this; +} + + +// Single precision +// +extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which, + int *nev, float *tol, float *resid, int *ncv, + float *v, int *ldv, int *iparam, int *ipntr, + float *workd, float *workl, int *lworkl, + int *info); + +extern "C" void sseupd_(int *rvec, char *All, int *select, float *d, + float *z, int *ldz, float *sigma, + char *bmat, int *n, char *which, int *nev, + float *tol, float *resid, int *ncv, float *v, + int *ldv, int *iparam, int *ipntr, float *workd, + float *workl, int *lworkl, int *ierr); + +// Double precision +// +extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which, + int *nev, double *tol, double *resid, int *ncv, + double *v, int *ldv, int *iparam, int *ipntr, + double *workd, double *workl, int *lworkl, + int *info); + +extern "C" void dseupd_(int *rvec, char *All, int *select, double *d, + double *z, int *ldz, double *sigma, + char *bmat, int *n, char *which, int *nev, + double *tol, double *resid, int *ncv, double *v, + int *ldv, int *iparam, int *ipntr, double *workd, + double *workl, int *lworkl, int *ierr); + + +namespace internal { + +template<typename Scalar, typename RealScalar> struct arpack_wrapper +{ + static inline void saupd(int *ido, char *bmat, int *n, char *which, + int *nev, RealScalar *tol, Scalar *resid, int *ncv, + Scalar *v, int *ldv, int *iparam, int *ipntr, + Scalar *workd, Scalar *workl, int *lworkl, int *info) + { + EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) + } + + static inline void seupd(int *rvec, char *All, int *select, Scalar *d, + Scalar *z, int *ldz, RealScalar *sigma, + char *bmat, int *n, char *which, int *nev, + RealScalar *tol, Scalar *resid, int *ncv, Scalar *v, + int *ldv, int *iparam, int *ipntr, Scalar *workd, + Scalar *workl, int *lworkl, int *ierr) + { + EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) + } +}; + +template <> struct arpack_wrapper<float, float> +{ + static inline void saupd(int *ido, char *bmat, int *n, char *which, + int *nev, float *tol, float *resid, int *ncv, + float *v, int *ldv, int *iparam, int *ipntr, + float *workd, float *workl, int *lworkl, int *info) + { + ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info); + } + + static inline void seupd(int *rvec, char *All, int *select, float *d, + float *z, int *ldz, float *sigma, + char *bmat, int *n, char *which, int *nev, + float *tol, float *resid, int *ncv, float *v, + int *ldv, int *iparam, int *ipntr, float *workd, + float *workl, int *lworkl, int *ierr) + { + sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, + workd, workl, lworkl, ierr); + } +}; + +template <> struct arpack_wrapper<double, double> +{ + static inline void saupd(int *ido, char *bmat, int *n, char *which, + int *nev, double *tol, double *resid, int *ncv, + double *v, int *ldv, int *iparam, int *ipntr, + double *workd, double *workl, int *lworkl, int *info) + { + dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info); + } + + static inline void seupd(int *rvec, char *All, int *select, double *d, + double *z, int *ldz, double *sigma, + char *bmat, int *n, char *which, int *nev, + double *tol, double *resid, int *ncv, double *v, + int *ldv, int *iparam, int *ipntr, double *workd, + double *workl, int *lworkl, int *ierr) + { + dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, + workd, workl, lworkl, ierr); + } +}; + + +template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> +struct OP +{ + static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out); + static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs); +}; + +template<typename MatrixSolver, typename MatrixType, typename Scalar> +struct OP<MatrixSolver, MatrixType, Scalar, true> +{ + static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out) +{ + // OP = L^{-1} A L^{-T} (B = LL^T) + // + // First solve L^T out = in + // + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n); + + // Then compute out = A out + // + Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n); + + // Then solve L out = out + // + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n); + Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n)); +} + + static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs) +{ + // Solve L^T out = in + // + Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k)); + Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k); +} + +}; + +template<typename MatrixSolver, typename MatrixType, typename Scalar> +struct OP<MatrixSolver, MatrixType, Scalar, false> +{ + static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out) +{ + eigen_assert(false && "Should never be in here..."); +} + + static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs) +{ + eigen_assert(false && "Should never be in here..."); +} + +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H + |