diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h b/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h new file mode 100644 index 0000000..dc0093e --- /dev/null +++ b/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h @@ -0,0 +1,189 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> + +/* NOTE The functions of this file have been adapted from the GMM++ library */ + +//======================================================================== +// +// Copyright (C) 2002-2007 Yves Renard +// +// This file is a part of GETFEM++ +// +// Getfem++ is free software; you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as +// published by the Free Software Foundation; version 2.1 of the License. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// You should have received a copy of the GNU Lesser General Public +// License along with this program; if not, write to the Free Software +// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, +// USA. +// +//======================================================================== + +#include "../../../../Eigen/src/Core/util/NonMPL2.h" + +#ifndef EIGEN_CONSTRAINEDCG_H +#define EIGEN_CONSTRAINEDCG_H + +#include <Eigen/Core> + +namespace Eigen { + +namespace internal { + +/** \ingroup IterativeSolvers_Module + * Compute the pseudo inverse of the non-square matrix C such that + * \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method. + * + * This function is internally used by constrained_cg. + */ +template <typename CMatrix, typename CINVMatrix> +void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV) +{ + // optimisable : copie de la ligne, precalcul de C * trans(C). + typedef typename CMatrix::Scalar Scalar; + typedef typename CMatrix::Index Index; + // FIXME use sparse vectors ? + typedef Matrix<Scalar,Dynamic,1> TmpVec; + + Index rows = C.rows(), cols = C.cols(); + + TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows); + Scalar rho, rho_1, alpha; + d.setZero(); + + typedef Triplet<double> T; + std::vector<T> tripletList; + + for (Index i = 0; i < rows; ++i) + { + d[i] = 1.0; + rho = 1.0; + e.setZero(); + r = d; + p = d; + + while (rho >= 1e-38) + { /* conjugate gradient to compute e */ + /* which is the i-th row of inv(C * trans(C)) */ + l = C.transpose() * p; + q = C * l; + alpha = rho / p.dot(q); + e += alpha * p; + r += -alpha * q; + rho_1 = rho; + rho = r.dot(r); + p = (rho/rho_1) * p + r; + } + + l = C.transpose() * e; // l is the i-th row of CINV + // FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse + for (Index j=0; j<l.size(); ++j) + if (l[j]<1e-15) + tripletList.push_back(T(i,j,l(j))); + + + d[i] = 0.0; + } + CINV.setFromTriplets(tripletList.begin(), tripletList.end()); +} + + + +/** \ingroup IterativeSolvers_Module + * Constrained conjugate gradient + * + * Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the contraint \f$ Cx \le f \f$ + */ +template<typename TMatrix, typename CMatrix, + typename VectorX, typename VectorB, typename VectorF> +void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x, + const VectorB& b, const VectorF& f, IterationController &iter) +{ + using std::sqrt; + typedef typename TMatrix::Scalar Scalar; + typedef typename TMatrix::Index Index; + typedef Matrix<Scalar,Dynamic,1> TmpVec; + + Scalar rho = 1.0, rho_1, lambda, gamma; + Index xSize = x.size(); + TmpVec p(xSize), q(xSize), q2(xSize), + r(xSize), old_z(xSize), z(xSize), + memox(xSize); + std::vector<bool> satured(C.rows()); + p.setZero(); + iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b) + if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0); + + SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols()); + pseudo_inverse(C, CINV); + + while(true) + { + // computation of residual + old_z = z; + memox = x; + r = b; + r += A * -x; + z = r; + bool transition = false; + for (Index i = 0; i < C.rows(); ++i) + { + Scalar al = C.row(i).dot(x) - f.coeff(i); + if (al >= -1.0E-15) + { + if (!satured[i]) + { + satured[i] = true; + transition = true; + } + Scalar bb = CINV.row(i).dot(z); + if (bb > 0.0) + // FIXME: we should allow that: z += -bb * C.row(i); + for (typename CMatrix::InnerIterator it(C,i); it; ++it) + z.coeffRef(it.index()) -= bb*it.value(); + } + else + satured[i] = false; + } + + // descent direction + rho_1 = rho; + rho = r.dot(z); + + if (iter.finished(rho)) break; + + if (iter.noiseLevel() > 0 && transition) std::cerr << "CCG: transition\n"; + if (transition || iter.first()) gamma = 0.0; + else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1); + p = z + gamma*p; + + ++iter; + // one dimensionnal optimization + q = A * p; + lambda = rho / q.dot(p); + for (Index i = 0; i < C.rows(); ++i) + { + if (!satured[i]) + { + Scalar bb = C.row(i).dot(p) - f[i]; + if (bb > 0.0) + lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb); + } + } + x += lambda * p; + memox -= x; + } +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CONSTRAINEDCG_H |