diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h | 278 |
1 files changed, 278 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h new file mode 100644 index 0000000..661c1f2 --- /dev/null +++ b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h @@ -0,0 +1,278 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INCOMPLETE_CHOlESKY_H +#define EIGEN_INCOMPLETE_CHOlESKY_H +#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h" +#include <Eigen/OrderingMethods> +#include <list> + +namespace Eigen { +/** + * \brief Modified Incomplete Cholesky with dual threshold + * + * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with + * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 + * + * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric + * matrix. It is advised to give a row-oriented sparse matrix + * \tparam _UpLo The triangular part of the matrix to reference. + * \tparam _OrderingType + */ + +template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> > +class IncompleteCholesky : internal::noncopyable +{ + public: + typedef SparseMatrix<Scalar,ColMajor> MatrixType; + typedef _OrderingType OrderingType; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; + typedef Matrix<Scalar,Dynamic,1> ScalarType; + typedef Matrix<Index,Dynamic, 1> IndexType; + typedef std::vector<std::list<Index> > VectorList; + enum { UpLo = _UpLo }; + public: + IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {} + IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false) + { + compute(matrix); + } + + Index rows() const { return m_L.rows(); } + + Index cols() const { return m_L.cols(); } + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, + * \c NumericalIssue if the matrix appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); + return m_info; + } + + /** + * \brief Set the initial shift parameter + */ + void setShift( Scalar shift) { m_shift = shift; } + + /** + * \brief Computes the fill reducing permutation vector. + */ + template<typename MatrixType> + void analyzePattern(const MatrixType& mat) + { + OrderingType ord; + ord(mat.template selfadjointView<UpLo>(), m_perm); + m_analysisIsOk = true; + } + + template<typename MatrixType> + void factorize(const MatrixType& amat); + + template<typename MatrixType> + void compute (const MatrixType& matrix) + { + analyzePattern(matrix); + factorize(matrix); + } + + template<typename Rhs, typename Dest> + void _solve(const Rhs& b, Dest& x) const + { + eigen_assert(m_factorizationIsOk && "factorize() should be called first"); + if (m_perm.rows() == b.rows()) + x = m_perm.inverse() * b; + else + x = b; + x = m_scal.asDiagonal() * x; + x = m_L.template triangularView<UnitLower>().solve(x); + x = m_L.adjoint().template triangularView<Upper>().solve(x); + if (m_perm.rows() == b.rows()) + x = m_perm * x; + x = m_scal.asDiagonal() * x; + } + template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs> + solve(const MatrixBase<Rhs>& b) const + { + eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed"); + eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); + eigen_assert(cols()==b.rows() + && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b"); + return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived()); + } + protected: + SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC + ScalarType m_scal; // The vector for scaling the matrix + Scalar m_shift; //The initial shift parameter + bool m_analysisIsOk; + bool m_factorizationIsOk; + bool m_isInitialized; + ComputationInfo m_info; + PermutationType m_perm; + + private: + template <typename IdxType, typename SclType> + inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol); +}; + +template<typename Scalar, int _UpLo, typename OrderingType> +template<typename _MatrixType> +void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) +{ + using std::sqrt; + using std::min; + eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); + + // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added + + // Apply the fill-reducing permutation computed in analyzePattern() + if (m_perm.rows() == mat.rows() ) // To detect the null permutation + m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); + else + m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); + + Index n = m_L.cols(); + Index nnz = m_L.nonZeros(); + Map<ScalarType> vals(m_L.valuePtr(), nnz); //values + Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices + Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row + IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization + VectorList listCol(n); // listCol(j) is a linked list of columns to update column j + ScalarType curCol(n); // Store a nonzero values in each column + IndexType irow(n); // Row indices of nonzero elements in each column + + + // Computes the scaling factors + m_scal.resize(n); + for (int j = 0; j < n; j++) + { + m_scal(j) = m_L.col(j).norm(); + m_scal(j) = sqrt(m_scal(j)); + } + // Scale and compute the shift for the matrix + Scalar mindiag = vals[0]; + for (int j = 0; j < n; j++){ + for (int k = colPtr[j]; k < colPtr[j+1]; k++) + vals[k] /= (m_scal(j) * m_scal(rowIdx[k])); + mindiag = (min)(vals[colPtr[j]], mindiag); + } + + if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag; + // Apply the shift to the diagonal elements of the matrix + for (int j = 0; j < n; j++) + vals[colPtr[j]] += m_shift; + // jki version of the Cholesky factorization + for (int j=0; j < n; ++j) + { + //Left-looking factorize the column j + // First, load the jth column into curCol + Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored + curCol.setZero(); + irow.setLinSpaced(n,0,n-1); + for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++) + { + curCol(rowIdx[i]) = vals[i]; + irow(rowIdx[i]) = rowIdx[i]; + } + std::list<int>::iterator k; + // Browse all previous columns that will update column j + for(k = listCol[j].begin(); k != listCol[j].end(); k++) + { + int jk = firstElt(*k); // First element to use in the column + jk += 1; + for (int i = jk; i < colPtr[*k+1]; i++) + { + curCol(rowIdx[i]) -= vals[i] * vals[jk] ; + } + updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); + } + + // Scale the current column + if(RealScalar(diag) <= 0) + { + std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n"; + m_info = NumericalIssue; + return; + } + RealScalar rdiag = sqrt(RealScalar(diag)); + vals[colPtr[j]] = rdiag; + for (int i = j+1; i < n; i++) + { + //Scale + curCol(i) /= rdiag; + //Update the remaining diagonals with curCol + vals[colPtr[i]] -= curCol(i) * curCol(i); + } + // Select the largest p elements + // p is the original number of elements in the column (without the diagonal) + int p = colPtr[j+1] - colPtr[j] - 1 ; + internal::QuickSplit(curCol, irow, p); + // Insert the largest p elements in the matrix + int cpt = 0; + for (int i = colPtr[j]+1; i < colPtr[j+1]; i++) + { + vals[i] = curCol(cpt); + rowIdx[i] = irow(cpt); + cpt ++; + } + // Get the first smallest row index and put it after the diagonal element + Index jk = colPtr(j)+1; + updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); + } + m_factorizationIsOk = true; + m_isInitialized = true; + m_info = Success; +} + +template<typename Scalar, int _UpLo, typename OrderingType> +template <typename IdxType, typename SclType> +inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol) +{ + if (jk < colPtr(col+1) ) + { + Index p = colPtr(col+1) - jk; + Index minpos; + rowIdx.segment(jk,p).minCoeff(&minpos); + minpos += jk; + if (rowIdx(minpos) != rowIdx(jk)) + { + //Swap + std::swap(rowIdx(jk),rowIdx(minpos)); + std::swap(vals(jk),vals(minpos)); + } + firstElt(col) = jk; + listCol[rowIdx(jk)].push_back(col); + } +} +namespace internal { + +template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs> +struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs> + : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs> +{ + typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec; + EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif |