summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h')
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h278
1 files changed, 278 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
new file mode 100644
index 0000000..661c1f2
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
@@ -0,0 +1,278 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
+#define EIGEN_INCOMPLETE_CHOlESKY_H
+#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
+#include <Eigen/OrderingMethods>
+#include <list>
+
+namespace Eigen {
+/**
+ * \brief Modified Incomplete Cholesky with dual threshold
+ *
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+ * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+ *
+ * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
+ * matrix. It is advised to give a row-oriented sparse matrix
+ * \tparam _UpLo The triangular part of the matrix to reference.
+ * \tparam _OrderingType
+ */
+
+template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
+class IncompleteCholesky : internal::noncopyable
+{
+ public:
+ typedef SparseMatrix<Scalar,ColMajor> MatrixType;
+ typedef _OrderingType OrderingType;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
+ typedef Matrix<Scalar,Dynamic,1> ScalarType;
+ typedef Matrix<Index,Dynamic, 1> IndexType;
+ typedef std::vector<std::list<Index> > VectorList;
+ enum { UpLo = _UpLo };
+ public:
+ IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
+ IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
+ {
+ compute(matrix);
+ }
+
+ Index rows() const { return m_L.rows(); }
+
+ Index cols() const { return m_L.cols(); }
+
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful,
+ * \c NumericalIssue if the matrix appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+ return m_info;
+ }
+
+ /**
+ * \brief Set the initial shift parameter
+ */
+ void setShift( Scalar shift) { m_shift = shift; }
+
+ /**
+ * \brief Computes the fill reducing permutation vector.
+ */
+ template<typename MatrixType>
+ void analyzePattern(const MatrixType& mat)
+ {
+ OrderingType ord;
+ ord(mat.template selfadjointView<UpLo>(), m_perm);
+ m_analysisIsOk = true;
+ }
+
+ template<typename MatrixType>
+ void factorize(const MatrixType& amat);
+
+ template<typename MatrixType>
+ void compute (const MatrixType& matrix)
+ {
+ analyzePattern(matrix);
+ factorize(matrix);
+ }
+
+ template<typename Rhs, typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ eigen_assert(m_factorizationIsOk && "factorize() should be called first");
+ if (m_perm.rows() == b.rows())
+ x = m_perm.inverse() * b;
+ else
+ x = b;
+ x = m_scal.asDiagonal() * x;
+ x = m_L.template triangularView<UnitLower>().solve(x);
+ x = m_L.adjoint().template triangularView<Upper>().solve(x);
+ if (m_perm.rows() == b.rows())
+ x = m_perm * x;
+ x = m_scal.asDiagonal() * x;
+ }
+ template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
+ eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+ eigen_assert(cols()==b.rows()
+ && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
+ }
+ protected:
+ SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
+ ScalarType m_scal; // The vector for scaling the matrix
+ Scalar m_shift; //The initial shift parameter
+ bool m_analysisIsOk;
+ bool m_factorizationIsOk;
+ bool m_isInitialized;
+ ComputationInfo m_info;
+ PermutationType m_perm;
+
+ private:
+ template <typename IdxType, typename SclType>
+ inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
+};
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template<typename _MatrixType>
+void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
+{
+ using std::sqrt;
+ using std::min;
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
+
+ // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
+
+ // Apply the fill-reducing permutation computed in analyzePattern()
+ if (m_perm.rows() == mat.rows() ) // To detect the null permutation
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
+ else
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
+
+ Index n = m_L.cols();
+ Index nnz = m_L.nonZeros();
+ Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
+ Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
+ Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
+ IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
+ VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
+ ScalarType curCol(n); // Store a nonzero values in each column
+ IndexType irow(n); // Row indices of nonzero elements in each column
+
+
+ // Computes the scaling factors
+ m_scal.resize(n);
+ for (int j = 0; j < n; j++)
+ {
+ m_scal(j) = m_L.col(j).norm();
+ m_scal(j) = sqrt(m_scal(j));
+ }
+ // Scale and compute the shift for the matrix
+ Scalar mindiag = vals[0];
+ for (int j = 0; j < n; j++){
+ for (int k = colPtr[j]; k < colPtr[j+1]; k++)
+ vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
+ mindiag = (min)(vals[colPtr[j]], mindiag);
+ }
+
+ if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
+ // Apply the shift to the diagonal elements of the matrix
+ for (int j = 0; j < n; j++)
+ vals[colPtr[j]] += m_shift;
+ // jki version of the Cholesky factorization
+ for (int j=0; j < n; ++j)
+ {
+ //Left-looking factorize the column j
+ // First, load the jth column into curCol
+ Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
+ curCol.setZero();
+ irow.setLinSpaced(n,0,n-1);
+ for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+ {
+ curCol(rowIdx[i]) = vals[i];
+ irow(rowIdx[i]) = rowIdx[i];
+ }
+ std::list<int>::iterator k;
+ // Browse all previous columns that will update column j
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
+ {
+ int jk = firstElt(*k); // First element to use in the column
+ jk += 1;
+ for (int i = jk; i < colPtr[*k+1]; i++)
+ {
+ curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
+ }
+ updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
+ }
+
+ // Scale the current column
+ if(RealScalar(diag) <= 0)
+ {
+ std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
+ m_info = NumericalIssue;
+ return;
+ }
+ RealScalar rdiag = sqrt(RealScalar(diag));
+ vals[colPtr[j]] = rdiag;
+ for (int i = j+1; i < n; i++)
+ {
+ //Scale
+ curCol(i) /= rdiag;
+ //Update the remaining diagonals with curCol
+ vals[colPtr[i]] -= curCol(i) * curCol(i);
+ }
+ // Select the largest p elements
+ // p is the original number of elements in the column (without the diagonal)
+ int p = colPtr[j+1] - colPtr[j] - 1 ;
+ internal::QuickSplit(curCol, irow, p);
+ // Insert the largest p elements in the matrix
+ int cpt = 0;
+ for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
+ {
+ vals[i] = curCol(cpt);
+ rowIdx[i] = irow(cpt);
+ cpt ++;
+ }
+ // Get the first smallest row index and put it after the diagonal element
+ Index jk = colPtr(j)+1;
+ updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
+ }
+ m_factorizationIsOk = true;
+ m_isInitialized = true;
+ m_info = Success;
+}
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template <typename IdxType, typename SclType>
+inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
+{
+ if (jk < colPtr(col+1) )
+ {
+ Index p = colPtr(col+1) - jk;
+ Index minpos;
+ rowIdx.segment(jk,p).minCoeff(&minpos);
+ minpos += jk;
+ if (rowIdx(minpos) != rowIdx(jk))
+ {
+ //Swap
+ std::swap(rowIdx(jk),rowIdx(minpos));
+ std::swap(vals(jk),vals(minpos));
+ }
+ firstElt(col) = jk;
+ listCol[rowIdx(jk)].push_back(col);
+ }
+}
+namespace internal {
+
+template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
+struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
+ : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
+{
+ typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif