summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h')
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h107
1 files changed, 107 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
new file mode 100644
index 0000000..80c5d27
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
@@ -0,0 +1,107 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void dogleg(
+ const Matrix< Scalar, Dynamic, Dynamic > &qrfac,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Scalar delta,
+ Matrix< Scalar, Dynamic, 1 > &x)
+{
+ using std::abs;
+ using std::sqrt;
+
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index i, j;
+ Scalar sum, temp, alpha, bnorm;
+ Scalar gnorm, qnorm;
+ Scalar sgnorm;
+
+ /* Function Body */
+ const Scalar epsmch = NumTraits<Scalar>::epsilon();
+ const Index n = qrfac.cols();
+ eigen_assert(n==qtb.size());
+ eigen_assert(n==x.size());
+ eigen_assert(n==diag.size());
+ Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
+
+ /* first, calculate the gauss-newton direction. */
+ for (j = n-1; j >=0; --j) {
+ temp = qrfac(j,j);
+ if (temp == 0.) {
+ temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
+ if (temp == 0.)
+ temp = epsmch;
+ }
+ if (j==n-1)
+ x[j] = qtb[j] / temp;
+ else
+ x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
+ }
+
+ /* test whether the gauss-newton direction is acceptable. */
+ qnorm = diag.cwiseProduct(x).stableNorm();
+ if (qnorm <= delta)
+ return;
+
+ // TODO : this path is not tested by Eigen unit tests
+
+ /* the gauss-newton direction is not acceptable. */
+ /* next, calculate the scaled gradient direction. */
+
+ wa1.fill(0.);
+ for (j = 0; j < n; ++j) {
+ wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
+ wa1[j] /= diag[j];
+ }
+
+ /* calculate the norm of the scaled gradient and test for */
+ /* the special case in which the scaled gradient is zero. */
+ gnorm = wa1.stableNorm();
+ sgnorm = 0.;
+ alpha = delta / qnorm;
+ if (gnorm == 0.)
+ goto algo_end;
+
+ /* calculate the point along the scaled gradient */
+ /* at which the quadratic is minimized. */
+ wa1.array() /= (diag*gnorm).array();
+ // TODO : once unit tests cover this part,:
+ // wa2 = qrfac.template triangularView<Upper>() * wa1;
+ for (j = 0; j < n; ++j) {
+ sum = 0.;
+ for (i = j; i < n; ++i) {
+ sum += qrfac(j,i) * wa1[i];
+ }
+ wa2[j] = sum;
+ }
+ temp = wa2.stableNorm();
+ sgnorm = gnorm / temp / temp;
+
+ /* test whether the scaled gradient direction is acceptable. */
+ alpha = 0.;
+ if (sgnorm >= delta)
+ goto algo_end;
+
+ /* the scaled gradient direction is not acceptable. */
+ /* finally, calculate the point along the dogleg */
+ /* at which the quadratic is minimized. */
+ bnorm = qtb.stableNorm();
+ temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
+ temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta)));
+ alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp;
+algo_end:
+
+ /* form appropriate convex combination of the gauss-newton */
+ /* direction and the scaled gradient direction. */
+ temp = (1.-alpha) * (std::min)(sgnorm,delta);
+ x = temp * wa1 + alpha * x;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen