diff options
Diffstat (limited to 'eigen/unsupported/test/FFTW.cpp')
-rw-r--r-- | eigen/unsupported/test/FFTW.cpp | 262 |
1 files changed, 262 insertions, 0 deletions
diff --git a/eigen/unsupported/test/FFTW.cpp b/eigen/unsupported/test/FFTW.cpp new file mode 100644 index 0000000..d3718e2 --- /dev/null +++ b/eigen/unsupported/test/FFTW.cpp @@ -0,0 +1,262 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Mark Borgerding mark a borgerding net +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <unsupported/Eigen/FFT> + +template <typename T> +std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); } + +using namespace std; +using namespace Eigen; + + +template < typename T> +complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); } + +complex<long double> promote(float x) { return complex<long double>( x); } +complex<long double> promote(double x) { return complex<long double>( x); } +complex<long double> promote(long double x) { return complex<long double>( x); } + + + template <typename VT1,typename VT2> + long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf) + { + long double totalpower=0; + long double difpower=0; + long double pi = acos((long double)-1 ); + for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) { + complex<long double> acc = 0; + long double phinc = -2.*k0* pi / timebuf.size(); + for (size_t k1=0;k1<(size_t)timebuf.size();++k1) { + acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); + } + totalpower += numext::abs2(acc); + complex<long double> x = promote(fftbuf[k0]); + complex<long double> dif = acc - x; + difpower += numext::abs2(dif); + //cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl; + } + cerr << "rmse:" << sqrt(difpower/totalpower) << endl; + return sqrt(difpower/totalpower); + } + + template <typename VT1,typename VT2> + long double dif_rmse( const VT1 buf1,const VT2 buf2) + { + long double totalpower=0; + long double difpower=0; + size_t n = (min)( buf1.size(),buf2.size() ); + for (size_t k=0;k<n;++k) { + totalpower += (numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2.; + difpower += numext::abs2(buf1[k] - buf2[k]); + } + return sqrt(difpower/totalpower); + } + +enum { StdVectorContainer, EigenVectorContainer }; + +template<int Container, typename Scalar> struct VectorType; + +template<typename Scalar> struct VectorType<StdVectorContainer,Scalar> +{ + typedef vector<Scalar> type; +}; + +template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar> +{ + typedef Matrix<Scalar,Dynamic,1> type; +}; + +template <int Container, typename T> +void test_scalar_generic(int nfft) +{ + typedef typename FFT<T>::Complex Complex; + typedef typename FFT<T>::Scalar Scalar; + typedef typename VectorType<Container,Scalar>::type ScalarVector; + typedef typename VectorType<Container,Complex>::type ComplexVector; + + FFT<T> fft; + ScalarVector tbuf(nfft); + ComplexVector freqBuf; + for (int k=0;k<nfft;++k) + tbuf[k]= (T)( rand()/(double)RAND_MAX - .5); + + // make sure it DOESN'T give the right full spectrum answer + // if we've asked for half-spectrum + fft.SetFlag(fft.HalfSpectrum ); + fft.fwd( freqBuf,tbuf); + VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) ); + VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check + + fft.ClearFlag(fft.HalfSpectrum ); + fft.fwd( freqBuf,tbuf); + VERIFY( (size_t)freqBuf.size() == (size_t)nfft); + VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check + + if (nfft&1) + return; // odd FFTs get the wrong size inverse FFT + + ScalarVector tbuf2; + fft.inv( tbuf2 , freqBuf); + VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check + + + // verify that the Unscaled flag takes effect + ScalarVector tbuf3; + fft.SetFlag(fft.Unscaled); + + fft.inv( tbuf3 , freqBuf); + + for (int k=0;k<nfft;++k) + tbuf3[k] *= T(1./nfft); + + + //for (size_t i=0;i<(size_t) tbuf.size();++i) + // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl; + + VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );// gross check + + // verify that ClearFlag works + fft.ClearFlag(fft.Unscaled); + fft.inv( tbuf2 , freqBuf); + VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check +} + +template <typename T> +void test_scalar(int nfft) +{ + test_scalar_generic<StdVectorContainer,T>(nfft); + //test_scalar_generic<EigenVectorContainer,T>(nfft); +} + + +template <int Container, typename T> +void test_complex_generic(int nfft) +{ + typedef typename FFT<T>::Complex Complex; + typedef typename VectorType<Container,Complex>::type ComplexVector; + + FFT<T> fft; + + ComplexVector inbuf(nfft); + ComplexVector outbuf; + ComplexVector buf3; + for (int k=0;k<nfft;++k) + inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); + fft.fwd( outbuf , inbuf); + + VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check + fft.inv( buf3 , outbuf); + + VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check + + // verify that the Unscaled flag takes effect + ComplexVector buf4; + fft.SetFlag(fft.Unscaled); + fft.inv( buf4 , outbuf); + for (int k=0;k<nfft;++k) + buf4[k] *= T(1./nfft); + VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check + + // verify that ClearFlag works + fft.ClearFlag(fft.Unscaled); + fft.inv( buf3 , outbuf); + VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check +} + +template <typename T> +void test_complex(int nfft) +{ + test_complex_generic<StdVectorContainer,T>(nfft); + test_complex_generic<EigenVectorContainer,T>(nfft); +} +/* +template <typename T,int nrows,int ncols> +void test_complex2d() +{ + typedef typename Eigen::FFT<T>::Complex Complex; + FFT<T> fft; + Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2; + + src = Eigen::Matrix<Complex,nrows,ncols>::Random(); + //src = Eigen::Matrix<Complex,nrows,ncols>::Identity(); + + for (int k=0;k<ncols;k++) { + Eigen::Matrix<Complex,nrows,1> tmpOut; + fft.fwd( tmpOut,src.col(k) ); + dst2.col(k) = tmpOut; + } + + for (int k=0;k<nrows;k++) { + Eigen::Matrix<Complex,1,ncols> tmpOut; + fft.fwd( tmpOut, dst2.row(k) ); + dst2.row(k) = tmpOut; + } + + fft.fwd2(dst.data(),src.data(),ncols,nrows); + fft.inv2(src2.data(),dst.data(),ncols,nrows); + VERIFY( (src-src2).norm() < test_precision<T>() ); + VERIFY( (dst-dst2).norm() < test_precision<T>() ); +} +*/ + + +void test_return_by_value(int len) +{ + VectorXf in; + VectorXf in1; + in.setRandom( len ); + VectorXcf out1,out2; + FFT<float> fft; + + fft.SetFlag(fft.HalfSpectrum ); + + fft.fwd(out1,in); + out2 = fft.fwd(in); + VERIFY( (out1-out2).norm() < test_precision<float>() ); + in1 = fft.inv(out1); + VERIFY( (in1-in).norm() < test_precision<float>() ); +} + +void test_FFTW() +{ + CALL_SUBTEST( test_return_by_value(32) ); + //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) ); + //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) ); + CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); + CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); + CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); + CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); + CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); + CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); + CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); + + CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); + CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); + CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); + CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); + CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); + + #ifdef EIGEN_HAS_FFTWL + CALL_SUBTEST( test_complex<long double>(32) ); + CALL_SUBTEST( test_complex<long double>(256) ); + CALL_SUBTEST( test_complex<long double>(3*8) ); + CALL_SUBTEST( test_complex<long double>(5*32) ); + CALL_SUBTEST( test_complex<long double>(2*3*4) ); + CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); + CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); + + CALL_SUBTEST( test_scalar<long double>(32) ); + CALL_SUBTEST( test_scalar<long double>(45) ); + CALL_SUBTEST( test_scalar<long double>(50) ); + CALL_SUBTEST( test_scalar<long double>(256) ); + CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); + #endif +} |