From f0238cfb6997c4acfc2bd200de7295f3fa36968f Mon Sep 17 00:00:00 2001
From: Stanislaw Halik <sthalik@misaki.pl>
Date: Sun, 3 Mar 2019 21:09:10 +0100
Subject: don't index Eigen

---
 eigen/bench/sparse_cholesky.cpp | 216 ----------------------------------------
 1 file changed, 216 deletions(-)
 delete mode 100644 eigen/bench/sparse_cholesky.cpp

(limited to 'eigen/bench/sparse_cholesky.cpp')

diff --git a/eigen/bench/sparse_cholesky.cpp b/eigen/bench/sparse_cholesky.cpp
deleted file mode 100644
index ecb2267..0000000
--- a/eigen/bench/sparse_cholesky.cpp
+++ /dev/null
@@ -1,216 +0,0 @@
-// #define EIGEN_TAUCS_SUPPORT
-// #define EIGEN_CHOLMOD_SUPPORT
-#include <iostream>
-#include <Eigen/Sparse>
-
-// g++ -DSIZE=10000 -DDENSITY=0.001  sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG   -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/  -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
-
-#define NOGMM
-#define NOMTL
-
-#ifndef SIZE
-#define SIZE 10
-#endif
-
-#ifndef DENSITY
-#define DENSITY 0.01
-#endif
-
-#ifndef REPEAT
-#define REPEAT 1
-#endif
-
-#include "BenchSparseUtil.h"
-
-#ifndef MINDENSITY
-#define MINDENSITY 0.0004
-#endif
-
-#ifndef NBTRIES
-#define NBTRIES 10
-#endif
-
-#define BENCH(X) \
-  timer.reset(); \
-  for (int _j=0; _j<NBTRIES; ++_j) { \
-    timer.start(); \
-    for (int _k=0; _k<REPEAT; ++_k) { \
-        X  \
-  } timer.stop(); }
-
-// typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
-typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix;
-
-void fillSpdMatrix(float density, int rows, int cols,  EigenSparseSelfAdjointMatrix& dst)
-{
-  dst.startFill(rows*cols*density);
-  for(int j = 0; j < cols; j++)
-  {
-    dst.fill(j,j) = internal::random<Scalar>(10,20);
-    for(int i = j+1; i < rows; i++)
-    {
-      Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
-      if (v!=0)
-        dst.fill(i,j) = v;
-    }
-
-  }
-  dst.endFill();
-}
-
-#include <Eigen/Cholesky>
-
-template<int Backend>
-void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0)
-{
-  std::cout << name << "..." << std::flush;
-  BenchTimer timer;
-  timer.start();
-  SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags);
-  timer.stop();
-  std::cout << ":\t" << timer.value() << endl;
-
-  std::cout << "  nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
-//   std::cout << "sparse\n" << chol.matrixL() << "%\n";
-}
-
-int main(int argc, char *argv[])
-{
-  int rows = SIZE;
-  int cols = SIZE;
-  float density = DENSITY;
-  BenchTimer timer;
-
-  VectorXf b = VectorXf::Random(cols);
-  VectorXf x = VectorXf::Random(cols);
-
-  bool densedone = false;
-
-  //for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
-//   float density = 0.5;
-  {
-    EigenSparseSelfAdjointMatrix sm1(rows, cols);
-    std::cout << "Generate sparse matrix (might take a while)...\n";
-    fillSpdMatrix(density, rows, cols, sm1);
-    std::cout << "DONE\n\n";
-
-    // dense matrices
-    #ifdef DENSEMATRIX
-    if (!densedone)
-    {
-      densedone = true;
-      std::cout << "Eigen Dense\t" << density*100 << "%\n";
-      DenseMatrix m1(rows,cols);
-      eiToDense(sm1, m1);
-      m1 = (m1 + m1.transpose()).eval();
-      m1.diagonal() *= 0.5;
-
-//       BENCH(LLT<DenseMatrix> chol(m1);)
-//       std::cout << "dense:\t" << timer.value() << endl;
-
-      BenchTimer timer;
-      timer.start();
-      LLT<DenseMatrix> chol(m1);
-      timer.stop();
-      std::cout << "dense:\t" << timer.value() << endl;
-      int count = 0;
-      for (int j=0; j<cols; ++j)
-        for (int i=j; i<rows; ++i)
-          if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1))
-            count++;
-      std::cout << "dense: " << "nnz = " << count << "\n";
-//       std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
-    }
-    #endif
-
-    // eigen sparse matrices
-    doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
-
-    #ifdef EIGEN_CHOLMOD_SUPPORT
-    doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization);
-    #endif
-
-    #ifdef EIGEN_TAUCS_SUPPORT
-    doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization);
-    #endif
-
-    #if 0
-    // TAUCS
-    {
-      taucs_ccs_matrix A = sm1.asTaucsMatrix();
-
-      //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
-//       BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
-//       std::cout << "taucs:\t" << timer.value() << endl;
-
-      taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
-
-      for (int j=0; j<cols; ++j)
-      {
-        for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
-          std::cout << chol->values.d[i] << " ";
-      }
-    }
-
-    // CHOLMOD
-    #ifdef EIGEN_CHOLMOD_SUPPORT
-    {
-      cholmod_common c;
-      cholmod_start (&c);
-      cholmod_sparse A;
-      cholmod_factor *L;
-
-      A = sm1.asCholmodMatrix();
-      BenchTimer timer;
-//       timer.reset();
-      timer.start();
-      std::vector<int> perm(cols);
-//       std::vector<int> set(ncols);
-      for (int i=0; i<cols; ++i)
-        perm[i] = i;
-//       c.nmethods = 1;
-//       c.method[0] = 1;
-
-      c.nmethods = 1;
-      c.method [0].ordering = CHOLMOD_NATURAL;
-      c.postorder = 0;
-      c.final_ll = 1;
-
-      L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
-      timer.stop();
-      std::cout << "cholmod/analyze:\t" << timer.value() << endl;
-      timer.reset();
-      timer.start();
-      cholmod_factorize(&A, L, &c);
-      timer.stop();
-      std::cout << "cholmod/factorize:\t" << timer.value() << endl;
-
-      cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
-
-      cholmod_print_factor(L, "Factors", &c);
-
-      cholmod_print_sparse(cholmat, "Chol", &c);
-      cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
-//
-//       cholmod_print_sparse(&A, "A", &c);
-//       cholmod_write_sparse(stdout, &A, 0, 0, &c);
-
-
-//       for (int j=0; j<cols; ++j)
-//       {
-//           for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
-//             std::cout << chol->values.s[i] << " ";
-//       }
-    }
-    #endif
-
-    #endif
-
-
-
-  }
-
-
-  return 0;
-}
-
-- 
cgit v1.2.3