

Sixense SDK Reference Guide

Sixense Control System Runtime Library

© 2012 Sixense Entertainment, Inc.
All Rights Reserved

Confidential

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 2

Table of Contents

Datatypes .. 3

sixenseControllerData ... 4

sixenseAllControllerData... 6

Functions .. 7

sixenseInit ... 8

sixenseExit .. 9

sixenseGetMaxBases ... 10

sixenseSetActiveBase .. 11

sixenseIsBaseConnected ... 12

sixenseExit .. 9

sixenseGetMaxControllers ... 13

sixenseGetNumActiveControllers .. 14

sixenseIsControllerEnabled ... 15

sixenseGetAllNewestData .. 16

sixenseGetAllData ... 17

sixenseGetNewestData .. 18

sixenseGetData .. 19

sixenseGetHistorySize .. 20

sixenseSetFilterEnabled ... 21

sixenseGetFilterEnabled .. 22

sixenseSetFilterParams .. 23

sixenseGetFilterParams ... 24

sixenseTriggerVibration ... 25

sixenseAutoEnableHemisphereTracking ... 26

sixenseSetHighPriorityBindingEnabled ... 27

sixenseGetHighPriorityBindingEnabled ... 28

sixenseSetBaseColor .. 29

sixenseGetBaseColor .. 30

Constants .. 31

Return Codes Returned by libsixense ... 32

Button Macros ... 33

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 3

Datatypes

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 4

sixenseControllerData

Controller data retrieval structure

Definition

typedef struct _sixenseControllerData {

 float pos[3];

 float rot_mat[3][3];

 float joystick_x;

 float joystick_y;

 float trigger;

 unsigned int buttons;

 unsigned char sequence_number;

 float rot_quat[4];

 unsigned short firmware_revision;

 unsigned short hardware_revision;

 unsigned short packet_type;

 unsigned short magnetic_frequency;

 int enabled;

 int controller_index;

 unsigned char is_docked;

 unsigned char which_hand;

 unsigned char hemi_tracking_enabled;

} sixenseControllerData;

Members

pos The X, Y and Z position of the controller.
rot_mat A 3x3 matrix describing the rotation of the controller.
joystick_x The horizontal position of the joystick. -1.0 is full left, 0 is

centered, 1.0 is full right.
joystick_y The vertical position of the joystick. -1.0 is full down, 0 is

centered, 1.0 is full up.
trigger The status of the analog trigger. 0 is unpressed, 1.0 is fully

pressed.
buttons A bit vector describing the state of the controller buttons. See

below for the bit field descriptions. This value can be OR’ed
with one of the button macros to check the state of a given
button. See the Notes section for a list of these macros.

sequence_number Each subsequent datapoint is stamped with a sequence
number designating its order in the data stream. Since the
update rate is fixed at 60Hz, each increment in sequence
number counts as 16.6ms of system time.

rot_quat The current rotation angles for the controller in quaternion
form.

firmware_revision The current firmware revison.
hardware_revision The current revision.
packet_type The type of data packet, currently always 1.
magnetic_frequency Unused
enabled If the controller is connected this value will be 1. Equivalent

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 5

to calling sixenseIsControllerEnabled().
controller_index The hardware index of the controller referred to by this

packet. Note that this is independent of which controller is in
the players lef t or right hands. To determine which hardware
index is in which hand, the game must ask the user. An
example of this is sixenseUtils::controller_manager.

is_docked This will be 1 when the controller is sitting in the dock and 0
otherwise. Games can reference this value for determining
when to pause or disable Sixense functionality.

which_hand

hemi_tracking_enabled

When the controllers are placed in the dock (or when the
controller manager is run) this field will be set to a non-zero
value. If the controller is placed in the left side of the dock it
will be set to 1, and if it is placed on the right it will be set to
2. When sixenseInit is called this field is initialized to 0, and
will remain so until the controllers are docked. See the
Overview document for more details.
This will be 1 when both controllers have been docked or
when the sixenseUtils::controller_manager has successfully
completed.

Description

This structure is used by the sixenseGetNewestData(), sixenseGetData(),

sixenseGetAllNewestData() and sixenseGetAllData() call to retrieve the

current position data.

Notes

 The following table lists the definitions that can be used to access specific button states.

Macro
SIXENSE_BUTTON_1
SIXENSE_BUTTON_2
SIXENSE_BUTTON_3
SIXENSE_BUTTON_4

SIXENSE_BUTTON_START

SIXENSE_BUTTON_BUMPER

SIXENSE_BUTTON_JOYSTICK

See Also

sixenseGetNewestData()

sixenseGetData()

sixenseGetAllNewestData()

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 6

sixenseGetAllData()

Button macro definitions

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 7

sixenseAllControllerData

A convenience structure for querying all controllers at once.

Definition

typedef struct _sixenseAllControllerData {

 sixenseControllerData controllers[4];

} sixenseAllControllerData;

Members

controllers An array of 4 sixenseControllerData structures.

Description

This structure is used by the sixenseGetAllData() call to retrieve the current

position data for up to 4 controllers in a single call. This is more efficient than

calling sixenseGetData() multiple times per frame.

See Also

sixenseGetAllData(),

sixenseGetAllNewestData(),

button macro definitions.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 8

Functions

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 9

sixenseInit

Initialize the Sixense library.

Definition

int sixenseInit(void);

Return Values

SIXENSE_SUCCESS is returned if the library is successfully initialized; otherwise, the return

value is SIXENSE_FAILURE.

Description

This function initializes the Sixense library. It must be called at least one time per application.

Subsequent calls will have no effect. Once initialized, the other Sixense function calls will work as

described until sixenseExit() is called.

See Also

sixenseExit()

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 10

sixenseExit

Shut down the Sixense library.

Definition

int sixenseExit(void);

Return Values

SIXENSE_SUCCESS is returned if the library was successfully shut down; otherwise, the return

value is SIXENSE_FAILURE.

Description

This shuts down the Sixense library. After this function call, all Sixense API calls will return failure

until sixenseInit() is called again.

See Also

sixenseInit ()

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 11

sixenseGetMaxBases

Returns the maximum number of base units that can be connected to the computer at

once. Note that the bases have to have different magnetic frequencies in order to not

interfere with each other, and current retail products like the Razer Hydra only support

one frequency.

Definition

int sixenseGetMaxBases(void);

Return Values

This call returns the maximum number of base units supported by the Sixense control system.

Currently, this number is 4 for all platforms.

Description

At the current time the Sixense driver supports a maximum of 4 simultaneous base units. Since

this number may change in the future, sixenseGetMaxBases() should be called when iterating

through all bases to ensure compatibility. Note that the bases have to have different

magnetic frequencies in order to not interfere with each other, and current retail

products like the Razer Hydra only support one frequency.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 12

sixenseSetActiveBase

Designates which base subsequent API calls are to be directed to.

Definition

int sixenseSetActiveBase(int base_num);

Arguments

base_num An integer from 0 to sixenseGetMaxBases()-1

Return Values

SIXENSE_SUCCESS is returned if the the designated base is active and valid; otherwise, the

return value is SIXENSE_FAILURE

Description

It is possible for the Sixense API to address multiple bases connected to the same computer.

This call can be used to designate which base all subsequent API calls are directed towards.

sixenseInit and sixenseExit are not affected by this call. Note that the bases have to have

different magnetic frequencies in order to not interfere with each other, and

current retail products like the Razer Hydra only support one frequency.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 13

sixenseIsBaseConnected

Used to determine if a base is currently connected to the system.

Definition

int sixenseIsBaseConnected(int base_num);

Arguments

base_num An integer from 0 to sixenseGetMaxBases()-1

Return Values

This call returns 1 if the base is currently plugged in and 0 otherwise.

Description

This call returns whether or not the designated base unit is attached to the system. For all current

consumer applications only one base is supported so the argument should always be 0. Calling

sixenseIsBaseConnected(0) can be used by the game to enable or disable Sixense support.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 14

sixenseGetMaxControllers

Returns the maximum number of controllers supported by the Sixense control system.

Definition

int sixenseGetMaxControllers(void);

Return Values

This call returns the maximum number of controllers supported by the Sixense control system.

Currently, this number is 4 for all platforms.

Description

At the current time the Sixense control system supports a maximum of 4 simultaneous

controllers. Since this number may change in the future, sixenseGetMaxControllers()

should be called when iterating through all controllers to ensure compatibility.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 15

sixenseGetNumActiveControllers

Reports the number of active controllers.

Definition

int sixenseGetNumActiveControllers(void);

Return Values

This call returns the number of controllers currently linked to the base station.

Description

At the current time the Sixense API supports a maximum of 4 simultaneous controllers. This call

can be used as a quick check to see whether enough controllers are available to play the game.

To find which controllers are actually linked, iterate from 0 to sixenseGetMaxControllers

and call sixenseIsControllerEnabled on each index.

See Also

sixenseGetMaxControllers, sixenseIsControllerEnabled

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 16

sixenseIsControllerEnabled

Returns true if the referenced controller is currently connected to the Base Unit.

Definition

int sixenseIsControllerEnabled(int which);

Return Values

This call returns the connection status of the referenced controller. 1 means the controller is

enabled, 0 means it is disabled.

Description

This call is used to determine whether or not a given controller is powered on and connected to

the system. The argument is an index between 0 and the maximum number of supported

controllers.

See Also

sixenseGetMaxControllers()

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 17

sixenseGetAllNewestData

Get the most recent state of all of the controllers.

Definition

int sixenseGetAllNewestData(sixenseAllControllerData *all_data);

Arguments

all_data A pointer to user-allocated memory for returning the controller

information.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This function returns the most recent state of all of the Sixense controllers.

sixenseIsControllerEnabled() should be used to determine whether a given controller’s

data is valid. This call is currently more efficent than calling sixenseGetData() multiple times

per frame.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 18

sixenseGetAllData

Get state of all of the controllers, selecting how far back into a history of the last 10

updates.

Definition

int sixenseGetAllData(int index_back,

 sixenseAllControllerData *all_data);

Arguments

index_back How far back in the history buffer to retrieve data. 0 returns the

most recent data, 9 returns the oldest data. Any of the last 10
positions may be queried.

all_data A pointer to user-allocated memory for returning the desired
controller information.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This function returns the most recent state of all of the Sixense controllers, looking back in history

if desired. When used in conjunction with the sequence numbers in the data packets, this function

is useful for referencing packets that may have been skipped due to the game’s frame rate

relative to the 60Hz update rate of the controller.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 19

sixenseGetNewestData

Get the most recent state of one of the controllers.

Definition

int sixenseGetNewestData(int which, sixenseControllerData *data);

Arguments

which The ID of the desired controller. Valid values are from 0 to 3. If

the desired controller is not connected, an empty data packet is
returned. Empty data packets are initialized to a zero position
and the identity rotation matrix.

data A pointer to user-allocated memory for returning the desired
controller information.

Return Values

SIXENSE_SUCCESS is returned if the data was successfully retrieved; otherwise, the return

value is SIXENSE_FAILURE. SIXENSE_FAILURE is also returned if the desired controller is not

currently connected.

Description

This function returns the most recent state of one of the connected Sixense controllers.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 20

sixenseGetData

Get state of one of the controllers, selecting how far back into a history of the last 10

updates.

Definition

int sixenseGetData(int which, int index_back,

 sixenseControllerData *data);

Arguments

which The ID of the desired controller. Valid values are from 0 to 3. If

the desired controller is not connected, an empty data packet is
returned. Empty data packets are initialized to a zero position
and the identity rotation matrix.

index_back How far back in the history buffer to retrieve data. 0 returns the
most recent data, 9 returns the oldest data. Any of the last 10
positions may be queried.

data A pointer to user-allocated memory for returning the desired
controller information.

Return Values

SIXENSE_SUCCESS is returned if the data was successfully retrieved; otherwise, the return

value is SIXENSE_FAILURE. SIXENSE_FAILURE is also returned if the desired controller is not

currently connected.

Description

This function returns the current state of one of the connected Sixense controllers, looking back in

history if desired. When used in conjunction with the sequence numbers in the data packets, this

function is useful for referencing packets that may have been skipped due to the games frame

rate relative to the 60Hz update rate of the controller.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 21

sixenseGetHistorySize

Get the size of the history buffer.

Definition

int sixenseGetHistorySize();

Return Values

The size of the history buffer is returned. For 3.2 hardware this value is always 10.

Description

The data access calls sixenseGetData and sixenseGetAllData take an argument

index_back that allows for the retrieval of older data packets. This can be used when the

application is checking data less frequently than the data is arriving from the USB port. If this is

the case, the missed packets can be fetched by using non 0 values of index_back. The

sequence_number element of the sixenseControllerData structure can be used to see

whether a given data packet has been seen before.

See Also

sixenseGetData, sixenseGetAllData, sixenseControllerData structure definition

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 22

sixenseSetFilterEnabled

Turn the internal position and orientation filtering on or off.

Definition

int sixenseSetFilterEnabled(int on_or_off);

Arguments

on_or_off The desired state of the filtering. 0 is off, 1 is on.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This call can be used to enable or disable filtering of the controller data. The filter parameters are

not affected by this call.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 23

sixenseGetFilterEnabled

Returns the enable status of the internal position and orientation filtering.

Definition

int sixenseGetFilterEnabled(int *on_or_off);

Arguments

on_or_off Pointer to variable in which to store the result.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This call is used to determine whether or not the controllers are filtering their positions and

orientations.

See Also

sixenseSetFilterEnabled()

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 24

sixenseSetFilterParams

Set the parameters that control the position and orientation filtering level.

Definition

int sixenseSetFilterParams(float near_range, float near_val,

 float far_range, float far_val);

Arguments

near_range The range from the Sixense Base Unit at which to start

increasing the filtering level from the near_val to far_val.

Between near_range and far_range, the near_val and

far_val are linearly interpolated.
near_val The minimum filtering value. This value is used for when the

controller is between 0 and near_val millimeters from the

Sixense Base Unit. Valid values are between 0 and 1.
far_range The range from the Sixense Base Unit after which to stop

interpolating the filter value from the near_val, and after

which to simply use far_val.
far_val The maximum filtering value. This value is used for when the

controller is between far_val and infinity. Valid values are

between 0 and 1.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

The Sixense controllers have built-in filtering capabilities. The filter is an Exponentially Weighted

Moving Average Filter, where each sample is averaged with previous samples via the formula

p(n) = f * p(n-1) + (1 – f) * p(n), where p(n) is the nth position in the series, and f is the filter value.

The filter value used is linearly interpolated from near_val to far_val over the range

[near_range,far_range]. near_val is used for [0, near_range), and far_val is

used for (far_range,infinity].

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 25

sixenseGetFilterParams

Returns the current filtering parameter values.

Definition

int sixenseGetFilterParams(float *near_range, float *near_val, float

*far_range, float *far_val);

Arguments

near_range Pointer to variable in which to store the result.
near_val Pointer to variable in which to store the result.
far_range Pointer to variable in which to store the result.
far_val Pointer to variable in which to store the result.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

Returns the current values used by the filtering algorithm.

See Also

sixenseSetFilterParams()

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 26

sixenseTriggerVibration

Enable a period of tactile feedback using the vibration motor. Note the Razer Hydra

does not support vibration.

Definition

int sixenseTriggerVibration(int controller_id, int duration_100ms,

 int pattern_id);

Arguments

controller_id The id of the controller to vibrate. Valid values are 0 through

sixenseGetMaxControllers.
duration_100ms The duration of the vibration, in 100 millisecond units. For

example, a value of ‘5’ will vibrate for half a second.
pattern_id Future SDK’s will support different pulsing patterns for the

vibration. Currently, this argument is ignored and the vibration
motor is engaged for the full duration.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This function triggers the vibration function. Each call triggers a single period of vibration. The

duration of the variation is programmable via the duration_100ms argument.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 27

sixenseAutoEnableHemisphereTracking

Enable Hemisphere Tracking when the controller is aiming at the base. This call is

deprecieated, as hemisphere tracking is automatically enabled when the controllers are

in the dock or by the sixenseUtils::controller_manager. See the Sixense API Overivew

for more information.

Definition

int sixenseAutoEnableHemisphereTracking(int which_controller);

Arguments

which_controller The 0 based index of the desired controller.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This call does not need to be called directly. When the controllers are placed in their docks,

hemisphere tracking is automatically enabled. Also, the sixenseUtils::controller_manager

automatically enables hemisphere tracking when the left and right controllers are designated.

The Sixense SDK consistently track positions when the controller is held above the Base Unit.

When passing below the Base Unit, an inconsistency in the positions and rotations will be seen.

This inconsistency will be that the X and Y values will flip sign, the Z value will begin increasing

instead of decreasing, and the rotation matrix will flip by 180 degrees. When hemisphere tracking

is enabled, the controller works through the entire tracking space.

To use this call to enable hemisphere tracking, prompt the user to point the controller at the base

unit and then make this function call. As long as the controller is pointing more towards the base

than away, hemisphere tracking will be enabled and the controller will work within the full tracking

sphere.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 28

sixenseSetHighPriorityBindingEnabled

This function enables and disables High Priority RF binding mode. This call is only used

with the wireless Sixense devkits.

Definition

int sixenseSetHighPriorityBindingEnabled(int on_or_off);

Arguments

on_or_off 1 enables High Priority binding, 0 disables it.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

By default, a Base Unit’s RF link is in low priority binding mode. This means that any controllers

that are powered up nearby will bind to whichever Base Unit they communicate with first. In cases

where there is only one base unit nearby, this will be the correct behavior. If there are multiple

Base Units within RF range (within about 10 meters), a controller in binding mode may link to any

of the in-range Base Units. To prevent this, the game application can put the Base Unit into High

Priority Binding mode, which will cause any controllers to link to that specific unit.

In a typical application, High Priority binding mode is enabled during the player select mode. For

example, when starting a game, High Priority Binding would be enabled, then the screen would

say “Player 1 press a button to continue”.

High Priority binding should only be left enabled for as long as necessary. The game should

monitor the number of controllers currently linked, then disable high priority binding as soon as

the desired number of controllers are available. This will make it less likely that multiple bases will

be in this mode at the same time.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 29

sixenseGetHighPriorityBindingEnabled

This function returns the current state of High Priority RF binding mode. This call is only

used with the wireless Sixense devkits.

Definition

int sixenseGetHighPriorityBindingEnabled(int *on_or_off);

Arguments

on_or_off The current state of the High Priority binding mode is stored in

the variable pointed to by this argument. 1 means it is enabled,
0 is disabled.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

For a detailed description of High Priority Binding mode, see

sixenseSetHighPriorityBindingEnabled.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 30

sixenseSetBaseColor

Sets the color of the LED on the Sixense wireless devkits. The Razer Hydra colors

cannot be changed.

Definition

int sixenseSetBaseColor(unsigned char red,

 unsigned char green,

 unsigned char blue);

Arguments

red Red component of the led color. 0 is off and 255 is fully red.
green Green component of the led color.
blue Blue component of the led color.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This call sets the RGB value of the LED on the base unit. The 3.2 devkit is limited to

approximately 64 different colors.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 31

sixenseGetBaseColor

Gets the color of the LED on the Sixense wireless devkits. The Razer Hydra colors

cannot be changed.

Definition

int sixenseGetBaseColor(unsigned char *red,

 unsigned char *green,

 unsigned char *blue);

Arguments

red Red component of the led color. 0 is off and 255 is fully red.
green Green component of the led color.
blue Blue component of the led color.

Return Values

SIXENSE_SUCCESS is returned as long as the Sixense system has been initialized, otherwise

SIXENSE_FAILURE.

Description

This returns the current RGB value of the LED on the base unit.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 32

Constants

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 33

Return Codes Returned by libsixense

List of return codes returned by libsixense

Definition

Macro Description

SIXENSE_SUCCESS Function call completed successfully.

SIXENSE_FAILURE An Error occurred during function call.

©2012 Sixense Entertainment, Inc CONFIDENTIAL

Sixense Controller Runtime Library Reference Guide 34

Button Macros

The Sixense SDK defines a set of macros for easily checking the state of a button.

These macros can be AND’ed with the buttons value in the

sixenseControllerData structure to check the state of the desired button.

Definition

Macro
SIXENSE_BUTTON_1
SIXENSE_BUTTON_2
SIXENSE_BUTTON_3
SIXENSE_BUTTON_4
SIXENSE_BUTTON_START
SIXENSE_BUTTON_BUMPER

SIXENSE_BUTTON_JOYSTICK

Example

if(ssdata.buttons0 & SIXENSE_BUTTON_1) {

 printf(“1 button pressed\n);

}

