summaryrefslogtreecommitdiffhomepage
path: root/ftnoir_tracker_pt/point_tracker.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2015-10-17 16:31:41 +0200
committerStanislaw Halik <sthalik@misaki.pl>2015-10-17 17:11:30 +0200
commit6dc31bc869c44c84429f3e52a033cbc09c1d3844 (patch)
tree81df73b83029327e3179015392770050b450dd2d /ftnoir_tracker_pt/point_tracker.cpp
parentb27141f3a4e4756c8019dabbdbd49b5a7da09ef0 (diff)
pt: reformat posit
Diffstat (limited to 'ftnoir_tracker_pt/point_tracker.cpp')
-rw-r--r--ftnoir_tracker_pt/point_tracker.cpp240
1 files changed, 120 insertions, 120 deletions
diff --git a/ftnoir_tracker_pt/point_tracker.cpp b/ftnoir_tracker_pt/point_tracker.cpp
index cedf1979..383061c5 100644
--- a/ftnoir_tracker_pt/point_tracker.cpp
+++ b/ftnoir_tracker_pt/point_tracker.cpp
@@ -110,7 +110,7 @@ void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel&
order = find_correspondences(points, model);
else
order = find_correspondences_previous(points, model, f);
-
+
POSIT(model, order, f);
init_phase = false;
t.start();
@@ -142,127 +142,127 @@ PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv
int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length)
{
- // POSIT algorithm for coplanar points as presented in
- // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
- // we use the same notation as in the paper here
-
- // The expected rotation used for resolving the ambiguity in POSIT:
- // In every iteration step the rotation closer to R_expected is taken
- cv::Matx33f R_expected = cv::Matx33f::eye();
-
- // initial pose = last (predicted) pose
- cv::Vec3f k;
- get_row(R_expected, 2, k);
- float Z0 = 1000.f;
-
- float old_epsilon_1 = 0;
- float old_epsilon_2 = 0;
- float epsilon_1 = 1;
- float epsilon_2 = 1;
-
- cv::Vec3f I0, J0;
- cv::Vec2f I0_coeff, J0_coeff;
-
- cv::Vec3f I_1, J_1, I_2, J_2;
- cv::Matx33f R_1, R_2;
- cv::Matx33f* R_current;
-
- const int MAX_ITER = 100;
- const float EPS_THRESHOLD = 1e-4;
-
- const cv::Vec2f* order = order_.points;
-
- int i=1;
- for (; i<MAX_ITER; ++i)
- {
- epsilon_1 = k.dot(model.M01)/Z0;
- epsilon_2 = k.dot(model.M02)/Z0;
-
- // vector of scalar products <I0, M0i> and <J0, M0i>
- cv::Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0],
- order[2][0]*(1.0 + epsilon_2) - order[0][0]);
- cv::Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1],
- order[2][1]*(1.0 + epsilon_2) - order[0][1]);
-
- // construct projection of I, J onto M0i plane: I0 and J0
- I0_coeff = model.P * I0_M0i;
- J0_coeff = model.P * J0_M0i;
- I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
- J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
-
- // calculate u component of I, J
- float II0 = I0.dot(I0);
- float IJ0 = I0.dot(J0);
- float JJ0 = J0.dot(J0);
- float rho, theta;
- if (JJ0 == II0) {
- rho = std::sqrt(std::abs(2*IJ0));
- theta = -PI/4;
- if (IJ0<0) theta *= -1;
- }
- else {
- rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
- theta = atan( -2*IJ0 / (JJ0-II0) );
- if (JJ0 - II0 < 0) theta += PI;
- theta /= 2;
- }
-
- // construct the two solutions
- I_1 = I0 + rho*cos(theta)*model.u;
- I_2 = I0 - rho*cos(theta)*model.u;
-
- J_1 = J0 + rho*sin(theta)*model.u;
- J_2 = J0 - rho*sin(theta)*model.u;
-
- float norm_const = 1.0/cv::norm(I_1); // all have the same norm
-
- // create rotation matrices
- I_1 *= norm_const; J_1 *= norm_const;
- I_2 *= norm_const; J_2 *= norm_const;
-
- set_row(R_1, 0, I_1);
- set_row(R_1, 1, J_1);
- set_row(R_1, 2, I_1.cross(J_1));
-
- set_row(R_2, 0, I_2);
- set_row(R_2, 1, J_2);
- set_row(R_2, 2, I_2.cross(J_2));
-
- // the single translation solution
- Z0 = norm_const * focal_length;
-
- // pick the rotation solution closer to the expected one
- // in simple metric d(A,B) = || I - A * B^T ||
- float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t());
- float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t());
-
- if (R_1_deviation < R_2_deviation)
- R_current = &R_1;
- else
- R_current = &R_2;
-
- get_row(*R_current, 2, k);
-
- // check for convergence condition
- if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD)
- break;
- old_epsilon_1 = epsilon_1;
- old_epsilon_2 = epsilon_2;
- }
-
- // apply results
- X_CM.R = *R_current;
- X_CM.t[0] = order[0][0] * Z0/focal_length;
- X_CM.t[1] = order[0][1] * Z0/focal_length;
- X_CM.t[2] = Z0;
-
- //qDebug() << "iter:" << i;
-
- return i;
+ // POSIT algorithm for coplanar points as presented in
+ // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
+ // we use the same notation as in the paper here
+
+ // The expected rotation used for resolving the ambiguity in POSIT:
+ // In every iteration step the rotation closer to R_expected is taken
+ cv::Matx33f R_expected = cv::Matx33f::eye();
+
+ // initial pose = last (predicted) pose
+ cv::Vec3f k;
+ get_row(R_expected, 2, k);
+ float Z0 = 1000.f;
+
+ float old_epsilon_1 = 0;
+ float old_epsilon_2 = 0;
+ float epsilon_1 = 1;
+ float epsilon_2 = 1;
+
+ cv::Vec3f I0, J0;
+ cv::Vec2f I0_coeff, J0_coeff;
+
+ cv::Vec3f I_1, J_1, I_2, J_2;
+ cv::Matx33f R_1, R_2;
+ cv::Matx33f* R_current;
+
+ const int MAX_ITER = 100;
+ const float EPS_THRESHOLD = 1e-4;
+
+ const cv::Vec2f* order = order_.points;
+
+ int i=1;
+ for (; i<MAX_ITER; ++i)
+ {
+ epsilon_1 = k.dot(model.M01)/Z0;
+ epsilon_2 = k.dot(model.M02)/Z0;
+
+ // vector of scalar products <I0, M0i> and <J0, M0i>
+ cv::Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0],
+ order[2][0]*(1.0 + epsilon_2) - order[0][0]);
+ cv::Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1],
+ order[2][1]*(1.0 + epsilon_2) - order[0][1]);
+
+ // construct projection of I, J onto M0i plane: I0 and J0
+ I0_coeff = model.P * I0_M0i;
+ J0_coeff = model.P * J0_M0i;
+ I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
+ J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
+
+ // calculate u component of I, J
+ float II0 = I0.dot(I0);
+ float IJ0 = I0.dot(J0);
+ float JJ0 = J0.dot(J0);
+ float rho, theta;
+ if (JJ0 == II0) {
+ rho = std::sqrt(std::abs(2*IJ0));
+ theta = -PI/4;
+ if (IJ0<0) theta *= -1;
+ }
+ else {
+ rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
+ theta = atan( -2*IJ0 / (JJ0-II0) );
+ if (JJ0 - II0 < 0) theta += PI;
+ theta /= 2;
+ }
+
+ // construct the two solutions
+ I_1 = I0 + rho*cos(theta)*model.u;
+ I_2 = I0 - rho*cos(theta)*model.u;
+
+ J_1 = J0 + rho*sin(theta)*model.u;
+ J_2 = J0 - rho*sin(theta)*model.u;
+
+ float norm_const = 1.0/cv::norm(I_1); // all have the same norm
+
+ // create rotation matrices
+ I_1 *= norm_const; J_1 *= norm_const;
+ I_2 *= norm_const; J_2 *= norm_const;
+
+ set_row(R_1, 0, I_1);
+ set_row(R_1, 1, J_1);
+ set_row(R_1, 2, I_1.cross(J_1));
+
+ set_row(R_2, 0, I_2);
+ set_row(R_2, 1, J_2);
+ set_row(R_2, 2, I_2.cross(J_2));
+
+ // the single translation solution
+ Z0 = norm_const * focal_length;
+
+ // pick the rotation solution closer to the expected one
+ // in simple metric d(A,B) = || I - A * B^T ||
+ float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t());
+ float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t());
+
+ if (R_1_deviation < R_2_deviation)
+ R_current = &R_1;
+ else
+ R_current = &R_2;
+
+ get_row(*R_current, 2, k);
+
+ // check for convergence condition
+ if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD)
+ break;
+ old_epsilon_1 = epsilon_1;
+ old_epsilon_2 = epsilon_2;
+ }
+
+ // apply results
+ X_CM.R = *R_current;
+ X_CM.t[0] = order[0][0] * Z0/focal_length;
+ X_CM.t[1] = order[0][1] * Z0/focal_length;
+ X_CM.t[2] = Z0;
+
+ //qDebug() << "iter:" << i;
+
+ return i;
}
cv::Vec2f PointTracker::project(const cv::Vec3f& v_M, float f)
{
- cv::Vec3f v_C = X_CM * v_M;
- return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]);
+ cv::Vec3f v_C = X_CM * v_M;
+ return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]);
}