diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2013-03-22 21:48:15 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2013-03-22 21:48:15 +0100 |
commit | 4f00c4c74d213a37a4b1a3313e50ce2b4dd51271 (patch) | |
tree | f692743cb752c994c05fe2761f83af08aa28d239 /ftnoir_tracker_pt/xxx_point_tracker.cpp | |
parent | 5c5ec4b4238996770bfd74ddfc87934ace40bf0f (diff) |
finish rename
Diffstat (limited to 'ftnoir_tracker_pt/xxx_point_tracker.cpp')
-rw-r--r-- | ftnoir_tracker_pt/xxx_point_tracker.cpp | 352 |
1 files changed, 352 insertions, 0 deletions
diff --git a/ftnoir_tracker_pt/xxx_point_tracker.cpp b/ftnoir_tracker_pt/xxx_point_tracker.cpp new file mode 100644 index 00000000..d617de19 --- /dev/null +++ b/ftnoir_tracker_pt/xxx_point_tracker.cpp @@ -0,0 +1,352 @@ +/* Copyright (c) 2012 Patrick Ruoff
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ */
+
+#include "point_tracker.h"
+
+#include <vector>
+#include <algorithm>
+#include <cmath>
+
+#include <QDebug>
+
+using namespace cv;
+using namespace boost;
+using namespace std;
+
+const float PI = 3.14159265358979323846f;
+
+// ----------------------------------------------------------------------------
+static void get_row(const Matx33f& m, int i, Vec3f& v)
+{
+ v[0] = m(i,0);
+ v[1] = m(i,1);
+ v[2] = m(i,2);
+}
+
+static void set_row(Matx33f& m, int i, const Vec3f& v)
+{
+ m(i,0) = v[0];
+ m(i,1) = v[1];
+ m(i,2) = v[2];
+}
+
+// ----------------------------------------------------------------------------
+PointModel::PointModel(Vec3f M01, Vec3f M02)
+ : M01(M01), M02(M02)
+{
+ // calculate u
+ u = M01.cross(M02);
+ u /= norm(u);
+
+ // calculate projection matrix on M01,M02 plane
+ float s11 = M01.dot(M01);
+ float s12 = M01.dot(M02);
+ float s22 = M02.dot(M02);
+ P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12,
+ -s12, s11);
+
+ // calculate d and d_order for simple freetrack-like point correspondence
+ vector<Vec2f> points;
+ points.push_back(Vec2f(0,0));
+ points.push_back(Vec2f(M01[0], M01[1]));
+ points.push_back(Vec2f(M02[0], M02[1]));
+ // fit line to orthographically projected points
+ // ERROR: yields wrong results with colinear points?!
+ /*
+ Vec4f line;
+ fitLine(points, line, CV_DIST_L2, 0, 0.01, 0.01);
+ d[0] = line[0]; d[1] = line[1];
+ */
+ // TODO: fix this
+ d = Vec2f(M01[0]-M02[0], M01[1]-M02[1]);
+
+ // sort model points
+ get_d_order(points, d_order);
+}
+
+void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[]) const
+{
+ // get sort indices with respect to d scalar product
+ vector< pair<float,int> > d_vals;
+ for (int i = 0; i<points.size(); ++i)
+ d_vals.push_back(pair<float, int>(d.dot(points[i]), i));
+
+ struct
+ {
+ bool operator()(const pair<float, int>& a, const pair<float, int>& b) { return a.first < b.first; }
+ } comp;
+ sort(d_vals.begin(), d_vals.end(), comp);
+
+ for (int i = 0; i<points.size(); ++i)
+ d_order[i] = d_vals[i].second;
+}
+
+
+// ----------------------------------------------------------------------------
+PointTracker::PointTracker() : init_phase(true), dt_valid(0), dt_reset(1), v_t(0,0,0), v_r(0,0,0), dynamic_pose_resolution(true)
+{
+ X_CM.t[2] = 1000; // default position: 1 m away from cam;
+}
+
+void PointTracker::reset()
+{
+ // enter init phase and reset velocities
+ init_phase = true;
+ dt_valid = 0;
+ reset_velocities();
+}
+
+void PointTracker::reset_velocities()
+{
+ v_t = Vec3f(0,0,0);
+ v_r = Vec3f(0,0,0);
+}
+
+
+bool PointTracker::track(const vector<Vec2f>& points, float f, float dt)
+{
+ if (!dynamic_pose_resolution) init_phase = true;
+
+ dt_valid += dt;
+ // if there was no valid tracking result for too long, do a reset
+ if (dt_valid > dt_reset)
+ {
+ //qDebug()<<"dt_valid "<<dt_valid<<" > dt_reset "<<dt_reset;
+ reset();
+ }
+
+ // if there is a pointtracking problem, reset the velocities
+ if (!point_model || points.size() != PointModel::N_POINTS)
+ {
+ //qDebug()<<"Wrong number of points!";
+ reset_velocities();
+ return false;
+ }
+
+ X_CM_old = X_CM; // backup old transformation for velocity calculation
+
+ if (!init_phase)
+ predict(dt_valid);
+
+ // if there is a point correspondence problem something has gone wrong, do a reset
+ if (!find_correspondences(points, f))
+ {
+ //qDebug()<<"Error in finding point correspondences!";
+ X_CM = X_CM_old; // undo prediction
+ reset();
+ return false;
+ }
+
+ int n_iter = POSIT(f);
+ //qDebug()<<"Number of POSIT iterations: "<<n_iter;
+
+ if (!init_phase)
+ update_velocities(dt_valid);
+
+ // we have a valid tracking result, leave init phase and reset time since valid result
+ init_phase = false;
+ dt_valid = 0;
+ return true;
+}
+
+void PointTracker::predict(float dt)
+{
+ // predict with constant velocity
+ Matx33f R;
+ Rodrigues(dt*v_r, R);
+ X_CM.R = R*X_CM.R;
+ X_CM.t += dt * v_t;
+}
+
+void PointTracker::update_velocities(float dt)
+{
+ // update velocities
+ Rodrigues(X_CM.R*X_CM_old.R.t(), v_r);
+ v_r /= dt;
+ v_t = (X_CM.t - X_CM_old.t)/dt;
+}
+
+bool PointTracker::find_correspondences(const vector<Vec2f>& points, float f)
+{
+ if (init_phase) {
+ // We do a simple freetrack-like sorting in the init phase...
+ // sort points
+ int point_d_order[PointModel::N_POINTS];
+ point_model->get_d_order(points, point_d_order);
+
+ // set correspondences
+ for (int i=0; i<PointModel::N_POINTS; ++i)
+ {
+ p[point_model->d_order[i]] = points[point_d_order[i]];
+ }
+ }
+ else {
+ // ... otherwise we look at the distance to the projection of the expected model points
+ // project model points under current pose
+ p_exp[0] = project(Vec3f(0,0,0), f);
+ p_exp[1] = project(point_model->M01, f);
+ p_exp[2] = project(point_model->M02, f);
+
+ // set correspondences by minimum distance to projected model point
+ bool point_taken[PointModel::N_POINTS];
+ for (int i=0; i<PointModel::N_POINTS; ++i)
+ point_taken[i] = false;
+
+ float min_sdist = 0;
+ int min_idx = 0;
+
+ for (int i=0; i<PointModel::N_POINTS; ++i)
+ {
+ // find closest point to projected model point i
+ for (int j=0; j<PointModel::N_POINTS; ++j)
+ {
+ Vec2f d = p_exp[i]-points[j];
+ float sdist = d.dot(d);
+ if (sdist < min_sdist || j==0)
+ {
+ min_idx = j;
+ min_sdist = sdist;
+ }
+ }
+ // if one point is closest to more than one model point, abort
+ if (point_taken[min_idx]) return false;
+ point_taken[min_idx] = true;
+ p[i] = points[min_idx];
+ }
+ }
+ return true;
+}
+
+
+
+int PointTracker::POSIT(float f)
+{
+ // POSIT algorithm for coplanar points as presented in
+ // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
+ // we use the same notation as in the paper here
+
+ // The expected rotation used for resolving the ambiguity in POSIT:
+ // In every iteration step the rotation closer to R_expected is taken
+ Matx33f R_expected;
+ if (init_phase)
+ R_expected = Matx33f::eye(); // in the init phase, we want to be close to the default pose = no rotation
+ else
+ R_expected = X_CM.R; // later we want to be close to the last (predicted) rotation
+
+ // initial pose = last (predicted) pose
+ Vec3f k;
+ get_row(X_CM.R, 2, k);
+ float Z0 = X_CM.t[2];
+
+ float old_epsilon_1 = 0;
+ float old_epsilon_2 = 0;
+ float epsilon_1 = 1;
+ float epsilon_2 = 1;
+
+ Vec3f I0, J0;
+ Vec2f I0_coeff, J0_coeff;
+
+ Vec3f I_1, J_1, I_2, J_2;
+ Matx33f R_1, R_2;
+ Matx33f* R_current;
+
+ const int MAX_ITER = 100;
+ const float EPS_THRESHOLD = 1e-4;
+
+ int i=1;
+ for (; i<MAX_ITER; ++i)
+ {
+ epsilon_1 = k.dot(point_model->M01)/Z0;
+ epsilon_2 = k.dot(point_model->M02)/Z0;
+
+ // vector of scalar products <I0, M0i> and <J0, M0i>
+ Vec2f I0_M0i(p[1][0]*(1.0 + epsilon_1) - p[0][0],
+ p[2][0]*(1.0 + epsilon_2) - p[0][0]);
+ Vec2f J0_M0i(p[1][1]*(1.0 + epsilon_1) - p[0][1],
+ p[2][1]*(1.0 + epsilon_2) - p[0][1]);
+
+ // construct projection of I, J onto M0i plane: I0 and J0
+ I0_coeff = point_model->P * I0_M0i;
+ J0_coeff = point_model->P * J0_M0i;
+ I0 = I0_coeff[0]*point_model->M01 + I0_coeff[1]*point_model->M02;
+ J0 = J0_coeff[0]*point_model->M01 + J0_coeff[1]*point_model->M02;
+
+ // calculate u component of I, J
+ float II0 = I0.dot(I0);
+ float IJ0 = I0.dot(J0);
+ float JJ0 = J0.dot(J0);
+ float rho, theta;
+ if (JJ0 == II0) {
+ rho = sqrt(abs(2*IJ0));
+ theta = -PI/4;
+ if (IJ0<0) theta *= -1;
+ }
+ else {
+ rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
+ theta = atan( -2*IJ0 / (JJ0-II0) );
+ if (JJ0 - II0 < 0) theta += PI;
+ theta /= 2;
+ }
+
+ // construct the two solutions
+ I_1 = I0 + rho*cos(theta)*point_model->u;
+ I_2 = I0 - rho*cos(theta)*point_model->u;
+
+ J_1 = J0 + rho*sin(theta)*point_model->u;
+ J_2 = J0 - rho*sin(theta)*point_model->u;
+
+ float norm_const = 1.0/norm(I_1); // all have the same norm
+
+ // create rotation matrices
+ I_1 *= norm_const; J_1 *= norm_const;
+ I_2 *= norm_const; J_2 *= norm_const;
+
+ set_row(R_1, 0, I_1);
+ set_row(R_1, 1, J_1);
+ set_row(R_1, 2, I_1.cross(J_1));
+
+ set_row(R_2, 0, I_2);
+ set_row(R_2, 1, J_2);
+ set_row(R_2, 2, I_2.cross(J_2));
+
+ // the single translation solution
+ Z0 = norm_const * f;
+
+ // pick the rotation solution closer to the expected one
+ // in simple metric d(A,B) = || I - A * B^T ||
+ float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t());
+ float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t());
+
+ if (R_1_deviation < R_2_deviation)
+ R_current = &R_1;
+ else
+ R_current = &R_2;
+
+ get_row(*R_current, 2, k);
+
+ // check for convergence condition
+ if (abs(epsilon_1 - old_epsilon_1) + abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD)
+ break;
+ old_epsilon_1 = epsilon_1;
+ old_epsilon_2 = epsilon_2;
+ }
+
+ // apply results
+ X_CM.R = *R_current;
+ X_CM.t[0] = p[0][0] * Z0/f;
+ X_CM.t[1] = p[0][1] * Z0/f;
+ X_CM.t[2] = Z0;
+
+ return i;
+
+ //Rodrigues(X_CM.R, r);
+ //qDebug()<<"iter: "<<i;
+ //qDebug()<<"t: "<<X_CM.t[0]<<' '<<X_CM.t[1]<<' '<<X_CM.t[2];
+ //Vec3f r;
+ //
+ //qDebug()<<"r: "<<r[0]<<' '<<r[1]<<' '<<r[2]<<'\n';
+}
|