diff options
author | Michael Welter <michael@welter-4d.de> | 2022-05-18 22:15:02 +0200 |
---|---|---|
committer | Michael Welter <michael@welter-4d.de> | 2022-05-19 20:47:11 +0200 |
commit | e3de47abc3eba2d1cebc94943a203623c6545f3f (patch) | |
tree | 72716f134ddb363c17f00bee9d854beb9387b621 /tracker-neuralnet/ftnoir_tracker_neuralnet.cpp | |
parent | e1d17f2d413de5f548931eaf9dfed2155e830096 (diff) |
tracker/nn: Use postfix underscore to indicate class member variables
Diffstat (limited to 'tracker-neuralnet/ftnoir_tracker_neuralnet.cpp')
-rw-r--r-- | tracker-neuralnet/ftnoir_tracker_neuralnet.cpp | 491 |
1 files changed, 246 insertions, 245 deletions
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp index 352baf29..5439b38e 100644 --- a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp +++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp @@ -320,49 +320,49 @@ int enum_to_fps(int value) Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) : - session{std::move(session)}, - scaled_frame(input_img_height, input_img_width, CV_8U), - input_mat(input_img_height, input_img_width, CV_32F) + session_{std::move(session)}, + scaled_frame_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_8U), + input_mat_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_32F) { // Only works when input_mat does not reallocated memory ...which it should not. // Non-owning memory reference to input_mat? // Note: shape = (bach x channels x h x w) - const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width }; - input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4); + const std::int64_t input_shape[4] = { 1, 1, INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH }; + input_val_ = Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4); const std::int64_t output_shape[2] = { 1, 5 }; - output_val = Ort::Value::CreateTensor<float>(allocator_info, results.data(), results.size(), output_shape, 2); + output_val_ = Ort::Value::CreateTensor<float>(allocator_info, results_.data(), results_.size(), output_shape, 2); } std::pair<float, cv::Rect2f> Localizer::run( const cv::Mat &frame) { - auto p = input_mat.ptr(0); + auto p = input_mat_.ptr(0); - cv::resize(frame, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA); - scaled_frame.convertTo(input_mat, CV_32F, 1./255., -0.5); + cv::resize(frame, scaled_frame_, { INPUT_IMG_WIDTH, INPUT_IMG_HEIGHT }, 0, 0, cv::INTER_AREA); + scaled_frame_.convertTo(input_mat_, CV_32F, 1./255., -0.5); - assert (input_mat.ptr(0) == p); - assert (!input_mat.empty() && input_mat.isContinuous()); - assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height); + assert (input_mat_.ptr(0) == p); + assert (!input_mat_.empty() && input_mat_.isContinuous()); + assert (input_mat_.cols == INPUT_IMG_WIDTH && input_mat_.rows == INPUT_IMG_HEIGHT); const char* input_names[] = {"x"}; const char* output_names[] = {"logit_box"}; Timer t; t.start(); - session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, &output_val, 1); + session_.Run(Ort::RunOptions{nullptr}, input_names, &input_val_, 1, output_names, &output_val_, 1); - last_inference_time = t.elapsed_ms(); + last_inference_time_ = t.elapsed_ms(); const cv::Rect2f roi = unnormalize(cv::Rect2f{ - results[1], - results[2], - results[3]-results[1], // Width - results[4]-results[2] // Height + results_[1], + results_[2], + results_[3]-results_[1], // Width + results_[4]-results_[2] // Height }, frame.rows, frame.cols); - const float score = sigmoid(results[0]); + const float score = sigmoid(results_[0]); return { score, roi }; } @@ -370,90 +370,91 @@ std::pair<float, cv::Rect2f> Localizer::run( double Localizer::last_inference_time_millis() const { - return last_inference_time; + return last_inference_time_; } PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&_session) - : model_version{_session.GetModelMetadata().GetVersion()} - , session{std::move(_session)} - , allocator{session, allocator_info} + : model_version_{_session.GetModelMetadata().GetVersion()} + , session_{std::move(_session)} + , allocator_{session_, allocator_info} { using namespace std::literals::string_literals; - if (session.GetOutputCount() < 2) + if (session_.GetOutputCount() < 2) throw std::runtime_error("Invalid Model: must have at least two outputs"); - // WARNING + // WARNING UB .. but still ... // If the model was saved without meta data, it seems the version field is uninitialized. // In that case reading from it is UB. However, we will just get same arbitrary number // which is hopefully different from the numbers used by models where the version is set. - if (model_version != 2) - model_version = 1; + // I.e., this is what happended in practice so far. + if (model_version_ != 2) + model_version_ = 1; - const cv::Size input_image_shape = get_input_image_shape(session); + const cv::Size input_image_shape = get_input_image_shape(session_); - scaled_frame = cv::Mat(input_image_shape, CV_8U); - input_mat = cv::Mat(input_image_shape, CV_32F); + scaled_frame_ = cv::Mat(input_image_shape, CV_8U); + input_mat_ = cv::Mat(input_image_shape, CV_32F); { const std::int64_t input_shape[4] = { 1, 1, input_image_shape.height, input_image_shape.width }; - input_val.push_back( - Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4)); + input_val_.push_back( + Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4)); } { const std::int64_t output_shape[2] = { 1, 3 }; - output_val.push_back(Ort::Value::CreateTensor<float>( - allocator_info, &output_coord[0], output_coord.rows, output_shape, 2)); + output_val_.push_back(Ort::Value::CreateTensor<float>( + allocator_info, &output_coord_[0], output_coord_.rows, output_shape, 2)); } { const std::int64_t output_shape[2] = { 1, 4 }; - output_val.push_back(Ort::Value::CreateTensor<float>( - allocator_info, &output_quat[0], output_quat.rows, output_shape, 2)); + output_val_.push_back(Ort::Value::CreateTensor<float>( + allocator_info, &output_quat_[0], output_quat_.rows, output_shape, 2)); } size_t num_regular_outputs = 2; - if (session.GetOutputCount() >= 3 && "box"s == session.GetOutputName(2, allocator)) + if (session_.GetOutputCount() >= 3 && "box"s == session_.GetOutputName(2, allocator_)) { const std::int64_t output_shape[2] = { 1, 4 }; - output_val.push_back(Ort::Value::CreateTensor<float>( - allocator_info, &output_box[0], output_box.rows, output_shape, 2)); + output_val_.push_back(Ort::Value::CreateTensor<float>( + allocator_info, &output_box_[0], output_box_.rows, output_shape, 2)); ++num_regular_outputs; qDebug() << "Note: Legacy model output for face ROI is currently ignored"; } - num_recurrent_states = session.GetInputCount()-1; - if (session.GetOutputCount()-num_regular_outputs != num_recurrent_states) + num_recurrent_states_ = session_.GetInputCount()-1; + if (session_.GetOutputCount()-num_regular_outputs != num_recurrent_states_) throw std::runtime_error("Invalid Model: After regular inputs and outputs the model must have equal number of inputs and outputs for tensors holding hidden states of recurrent layers."); // Create tensors for recurrent state - for (size_t i = 0; i < num_recurrent_states; ++i) + for (size_t i = 0; i < num_recurrent_states_; ++i) { - const auto& input_info = session.GetInputTypeInfo(1+i); - const auto& output_info = session.GetOutputTypeInfo(num_regular_outputs+i); + const auto& input_info = session_.GetInputTypeInfo(1+i); + const auto& output_info = session_.GetOutputTypeInfo(num_regular_outputs+i); if (input_info.GetTensorTypeAndShapeInfo().GetShape() != output_info.GetTensorTypeAndShapeInfo().GetShape()) throw std::runtime_error("Invalid Model: Tensors for recurrent hidden states should have same shape on intput and output"); - input_val.push_back(create_tensor(input_info, allocator)); - output_val.push_back(create_tensor(output_info, allocator)); + input_val_.push_back(create_tensor(input_info, allocator_)); + output_val_.push_back(create_tensor(output_info, allocator_)); } - for (size_t i = 0; i < session.GetInputCount(); ++i) + for (size_t i = 0; i < session_.GetInputCount(); ++i) { - input_names.push_back(session.GetInputName(i, allocator)); + input_names_.push_back(session_.GetInputName(i, allocator_)); } - for (size_t i = 0; i < session.GetOutputCount(); ++i) + for (size_t i = 0; i < session_.GetOutputCount(); ++i) { - output_names.push_back(session.GetOutputName(i, allocator)); + output_names_.push_back(session_.GetOutputName(i, allocator_)); } - qDebug() << "Model inputs: " << session.GetInputCount() << ", outputs: " << session.GetOutputCount() << ", recurrent states: " << num_recurrent_states; + qDebug() << "Model inputs: " << session_.GetInputCount() << ", outputs: " << session_.GetOutputCount() << ", recurrent states: " << num_recurrent_states_; - assert (input_names.size() == input_val.size()); - assert (output_names.size() == output_val.size()); + assert (input_names_.size() == input_val_.size()); + assert (output_names_.size() == output_val_.size()); } @@ -464,9 +465,9 @@ int PoseEstimator::find_input_intensity_90_pct_quantile() const float range[] = { 0, 256 }; const float* ranges[] = { range }; cv::Mat hist; - cv::calcHist(&scaled_frame, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false); + cv::calcHist(&scaled_frame_, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false); int gray_level = 0; - const int num_pixels_quantile = scaled_frame.total()*0.9f; + const int num_pixels_quantile = scaled_frame_.total()*0.9f; int num_pixels_accum = 0; for (int i=0; i<hist_size[0]; ++i) { @@ -498,33 +499,33 @@ std::optional<PoseEstimator::Face> PoseEstimator::run( if (cropped.rows != patch_size || cropped.cols != patch_size) return {}; - auto p = input_mat.ptr(0); + auto p = input_mat_.ptr(0); - cv::resize(cropped, scaled_frame, scaled_frame.size(), 0, 0, cv::INTER_AREA); + cv::resize(cropped, scaled_frame_, scaled_frame_.size(), 0, 0, cv::INTER_AREA); // Automatic brightness amplification. const int brightness = find_input_intensity_90_pct_quantile(); const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255; const double beta = -0.5; - scaled_frame.convertTo(input_mat, CV_32F, alpha, beta); + scaled_frame_.convertTo(input_mat_, CV_32F, alpha, beta); - assert (input_mat.ptr(0) == p); - assert (!input_mat.empty() && input_mat.isContinuous()); + assert (input_mat_.ptr(0) == p); + assert (!input_mat_.empty() && input_mat_.isContinuous()); Timer t; t.start(); try { - session.Run( + session_.Run( Ort::RunOptions{ nullptr }, - input_names.data(), - input_val.data(), - input_val.size(), - output_names.data(), - output_val.data(), - output_val.size()); + input_names_.data(), + input_val_.data(), + input_val_.size(), + output_names_.data(), + output_val_.data(), + output_val_.size()); } catch (const Ort::Exception &e) { @@ -532,14 +533,14 @@ std::optional<PoseEstimator::Face> PoseEstimator::run( return {}; } - for (size_t i = 0; i<num_recurrent_states; ++i) + for (size_t i = 0; i<num_recurrent_states_; ++i) { // Next step, the current output becomes the input. // Thus we realize the recurrent connection. // Only swaps the internal pointers. There is no copy of data. std::swap( - output_val[output_val.size()-num_recurrent_states+i], - input_val[input_val.size()-num_recurrent_states+i]); + output_val_[output_val_.size()-num_recurrent_states_+i], + input_val_[input_val_.size()-num_recurrent_states_+i]); } // FIXME: Execution time fluctuates wildly. 19 to 26 msec. Why? @@ -547,35 +548,35 @@ std::optional<PoseEstimator::Face> PoseEstimator::run( // issue. The ONNX api suggests that tensor are allocated in an // arena. Does that matter? Maybe the issue is something else? - last_inference_time = t.elapsed_ms(); + last_inference_time_ = t.elapsed_ms(); // Perform coordinate transformation. // From patch-local normalized in [-1,1] to // frame unnormalized pixel coordinatesettings. const cv::Point2f center = patch_center + - (0.5f*patch_size)*cv::Point2f{output_coord[0], output_coord[1]}; + (0.5f*patch_size)*cv::Point2f{output_coord_[0], output_coord_[1]}; - const float size = patch_size*0.5f*output_coord[2]; + const float size = patch_size*0.5f*output_coord_[2]; // Following Eigen which uses quat components in the order w, x, y, z. quat rotation = { - output_quat[3], - output_quat[0], - output_quat[1], - output_quat[2] }; + output_quat_[3], + output_quat_[0], + output_quat_[1], + output_quat_[2] }; - if (model_version < 2) + if (model_version_ < 2) { // Due to a change in coordinate conventions rotation = world_to_image(rotation); } const cv::Rect2f outbox = { - patch_center.x + (0.5f*patch_size)*output_box[0], - patch_center.y + (0.5f*patch_size)*output_box[1], - 0.5f*patch_size*(output_box[2]-output_box[0]), - 0.5f*patch_size*(output_box[3]-output_box[1]) + patch_center.x + (0.5f*patch_size)*output_box_[0], + patch_center.y + (0.5f*patch_size)*output_box_[1], + 0.5f*patch_size*(output_box_[2]-output_box_[0]), + 0.5f*patch_size*(output_box_[3]-output_box_[1]) }; return std::optional<Face>({ @@ -587,9 +588,9 @@ std::optional<PoseEstimator::Face> PoseEstimator::run( cv::Mat PoseEstimator::last_network_input() const { cv::Mat ret; - if (!input_mat.empty()) + if (!input_mat_.empty()) { - input_mat.convertTo(ret, CV_8U, 255., 127.); + input_mat_.convertTo(ret, CV_8U, 255., 127.); cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB); } return ret; @@ -598,11 +599,11 @@ cv::Mat PoseEstimator::last_network_input() const double PoseEstimator::last_inference_time_millis() const { - return last_inference_time; + return last_inference_time_; } -bool neuralnet_tracker::detect() +bool NeuralNetTracker::detect() { double inference_time = 0.; @@ -613,35 +614,35 @@ bool neuralnet_tracker::detect() } }; // Note: BGR colors! - if (!last_localizer_roi || !last_roi || - iou(*last_localizer_roi,*last_roi)<0.25) + if (!last_localizer_roi_ || !last_roi_ || + iou(*last_localizer_roi_,*last_roi_)<0.25) { - auto [p, rect] = localizer->run(grayscale_); - inference_time += localizer->last_inference_time_millis(); + auto [p, rect] = localizer_->run(grayscale_); + inference_time += localizer_->last_inference_time_millis(); if (p > 0.5 || rect.height < 5 || rect.width < 5) { - last_localizer_roi = rect; - last_roi = rect; + last_localizer_roi_ = rect; + last_roi_ = rect; } else { - last_roi.reset(); - last_localizer_roi.reset(); + last_roi_.reset(); + last_localizer_roi_.reset(); } } - if (!last_roi) + if (!last_roi_) { draw_gizmos({}, {}); return false; } - auto face = poseestimator->run(grayscale_, *last_roi); - inference_time += poseestimator->last_inference_time_millis(); + auto face = poseestimator_->run(grayscale_, *last_roi_); + inference_time += poseestimator_->last_inference_time_millis(); if (!face) { - last_roi.reset(); + last_roi_.reset(); draw_gizmos(*face, {}); return false; } @@ -653,7 +654,7 @@ bool neuralnet_tracker::detect() // been tweaked so that it works pretty well. // In old behaviour ROI is taken from the model outputs const vec3 offset = rotate_vec(face->rotation, vec3{0.f, 0.1f*face->size, face->size*0.3f}); - const float halfsize = face->size/float(settings.roi_zoom); + const float halfsize = face->size/float(settings_.roi_zoom); face->box = cv::Rect2f( face->center.x + offset[0] - halfsize, face->center.y + offset[1] - halfsize, @@ -662,14 +663,14 @@ bool neuralnet_tracker::detect() ); } - last_roi = ewa_filter(*last_roi, face->box, float(settings.roi_filter_alpha)); + last_roi_ = ewa_filter(*last_roi_, face->box, float(settings_.roi_filter_alpha)); Affine pose = compute_pose(*face); draw_gizmos(*face, pose); { - QMutexLocker lck(&mtx); + QMutexLocker lck(&mtx_); this->pose_ = pose; } @@ -677,18 +678,18 @@ bool neuralnet_tracker::detect() } -void neuralnet_tracker::draw_gizmos( +void NeuralNetTracker::draw_gizmos( const std::optional<PoseEstimator::Face> &face, const Affine& pose) { if (!is_visible_) return; - preview_.draw_gizmos(face, pose, last_roi, last_localizer_roi, world_to_image(pose.t, grayscale_.size(), intrinsics)); + preview_.draw_gizmos(face, pose, last_roi_, last_localizer_roi_, world_to_image(pose.t, grayscale_.size(), intrinsics_)); - if (settings.show_network_input) + if (settings_.show_network_input) { - cv::Mat netinput = poseestimator->last_network_input(); + cv::Mat netinput = poseestimator_->last_network_input(); preview_.overlay_netinput(netinput); } @@ -696,13 +697,13 @@ void neuralnet_tracker::draw_gizmos( } -Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const +Affine NeuralNetTracker::compute_pose(const PoseEstimator::Face &face) const { // Compute the location the network outputs in 3d space. const mat33 rot_correction = compute_rotation_correction( normalize(face.center, grayscale_.rows, grayscale_.cols), - intrinsics.focal_length_w); + intrinsics_.focal_length_w); const mat33 m = rot_correction * quaternion_to_mat33( image_to_world(face.rotation)); @@ -721,18 +722,18 @@ Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const */ const vec3 face_world_pos = image_to_world( - face.center.x, face.center.y, face.size, head_size_mm, + face.center.x, face.center.y, face.size, HEAD_SIZE_MM, grayscale_.size(), - intrinsics); + intrinsics_); // But this is in general not the location of the rotation joint in the neck. // So we need an extra offset. Which we determine by solving // z,y,z-pos = head_joint_loc + R_face * offset const vec3 pos = face_world_pos + m * vec3{ - static_cast<float>(settings.offset_fwd), - static_cast<float>(settings.offset_up), - static_cast<float>(settings.offset_right)}; + static_cast<float>(settings_.offset_fwd), + static_cast<float>(settings_.offset_up), + static_cast<float>(settings_.offset_right)}; return { m, pos }; } @@ -843,13 +844,13 @@ float Preview::transform(float s) const } -neuralnet_tracker::neuralnet_tracker() +NeuralNetTracker::NeuralNetTracker() { opencv_init(); } -neuralnet_tracker::~neuralnet_tracker() +NeuralNetTracker::~NeuralNetTracker() { requestInterruption(); wait(); @@ -858,22 +859,22 @@ neuralnet_tracker::~neuralnet_tracker() } -module_status neuralnet_tracker::start_tracker(QFrame* videoframe) +module_status NeuralNetTracker::start_tracker(QFrame* videoframe) { videoframe->show(); - videoWidget = std::make_unique<cv_video_widget>(videoframe); - layout = std::make_unique<QHBoxLayout>(); - layout->setContentsMargins(0, 0, 0, 0); - layout->addWidget(&*videoWidget); - videoframe->setLayout(&*layout); - videoWidget->show(); - num_threads = settings.num_threads; + video_widget_ = std::make_unique<cv_video_widget>(videoframe); + layout_ = std::make_unique<QHBoxLayout>(); + layout_->setContentsMargins(0, 0, 0, 0); + layout_->addWidget(&*video_widget_); + videoframe->setLayout(&*layout_); + video_widget_->show(); + num_threads_ = settings_.num_threads; start(); return status_ok(); } -bool neuralnet_tracker::load_and_initialize_model() +bool NeuralNetTracker::load_and_initialize_model() { const QString localizer_model_path_enc = OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx"; @@ -882,7 +883,7 @@ bool neuralnet_tracker::load_and_initialize_model() try { - env = Ort::Env{ + env_ = Ort::Env{ OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "tracker-neuralnet" }; @@ -890,17 +891,17 @@ bool neuralnet_tracker::load_and_initialize_model() // Do thread settings here do anything? // There is a warning which says to control number of threads via // openmp settings. Which is what we do. - opts.SetIntraOpNumThreads(num_threads); + opts.SetIntraOpNumThreads(num_threads_); opts.SetInterOpNumThreads(1); - allocator_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); + allocator_info_ = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); - localizer.emplace( - allocator_info, - Ort::Session{env, convert(localizer_model_path_enc).c_str(), opts}); + localizer_.emplace( + allocator_info_, + Ort::Session{env_, convert(localizer_model_path_enc).c_str(), opts}); - poseestimator.emplace( - allocator_info, - Ort::Session{env, convert(poseestimator_model_path_enc).c_str(), opts}); + poseestimator_.emplace( + allocator_info_, + Ort::Session{env_, convert(poseestimator_model_path_enc).c_str(), opts}); } catch (const Ort::Exception &e) { @@ -912,17 +913,17 @@ bool neuralnet_tracker::load_and_initialize_model() } -bool neuralnet_tracker::open_camera() +bool NeuralNetTracker::open_camera() { - int rint = std::clamp(*settings.resolution, 0, (int)std::size(resolution_choices)-1); + int rint = std::clamp(*settings_.resolution, 0, (int)std::size(resolution_choices)-1); resolution_tuple res = resolution_choices[rint]; - int fps = enum_to_fps(settings.force_fps); + int fps = enum_to_fps(settings_.force_fps); - QMutexLocker l(&camera_mtx); + QMutexLocker l(&camera_mtx_); - camera = video::make_camera(settings.camera_name); + camera_ = video::make_camera(settings_.camera_name); - if (!camera) + if (!camera_) return false; video::impl::camera::info args {}; @@ -935,9 +936,9 @@ bool neuralnet_tracker::open_camera() if (fps) args.fps = fps; - args.use_mjpeg = settings.use_mjpeg; + args.use_mjpeg = settings_.use_mjpeg; - if (!camera->start(args)) + if (!camera_->start(args)) { qDebug() << "neuralnet tracker: can't open camera"; return false; @@ -947,39 +948,39 @@ bool neuralnet_tracker::open_camera() } -void neuralnet_tracker::set_intrinsics() +void NeuralNetTracker::set_intrinsics() { const int w = grayscale_.cols, h = grayscale_.rows; - const double diag_fov = settings.fov * M_PI / 180.; + const double diag_fov = settings_.fov * M_PI / 180.; const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w)); const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h)); const double focal_length_w = 1. / tan(.5 * fov_w); const double focal_length_h = 1. / tan(.5 * fov_h); - intrinsics.fov_h = fov_h; - intrinsics.fov_w = fov_w; - intrinsics.focal_length_w = focal_length_w; - intrinsics.focal_length_h = focal_length_h; + intrinsics_.fov_h = fov_h; + intrinsics_.fov_w = fov_w; + intrinsics_.focal_length_w = focal_length_w; + intrinsics_.focal_length_h = focal_length_h; } class GuardedThreadCountSwitch { - int old_num_threads_cv = 1; - int old_num_threads_omp = 1; + int old_num_threads_cv_ = 1; + int old_num_threads_omp_ = 1; public: GuardedThreadCountSwitch(int num_threads) { - old_num_threads_cv = cv::getNumThreads(); - old_num_threads_omp = omp_get_num_threads(); + old_num_threads_cv_ = cv::getNumThreads(); + old_num_threads_omp_ = omp_get_num_threads(); omp_set_num_threads(num_threads); cv::setNumThreads(num_threads); } ~GuardedThreadCountSwitch() { - omp_set_num_threads(old_num_threads_omp); - cv::setNumThreads(old_num_threads_cv); + omp_set_num_threads(old_num_threads_omp_); + cv::setNumThreads(old_num_threads_cv_); } GuardedThreadCountSwitch(const GuardedThreadCountSwitch&) = delete; @@ -987,11 +988,11 @@ class GuardedThreadCountSwitch }; -void neuralnet_tracker::run() +void NeuralNetTracker::run() { - preview_.init(*videoWidget); + preview_.init(*video_widget_); - GuardedThreadCountSwitch switch_num_threads_to(num_threads); + GuardedThreadCountSwitch switch_num_threads_to(num_threads_); if (!open_camera()) return; @@ -1006,9 +1007,9 @@ void neuralnet_tracker::run() is_visible_ = check_is_visible(); auto t = clk.now(); { - QMutexLocker l(&camera_mtx); + QMutexLocker l(&camera_mtx_); - auto [ img, res ] = camera->get_frame(); + auto [ img, res ] = camera_->get_frame(); if (!res) { @@ -1047,7 +1048,7 @@ void neuralnet_tracker::run() detect(); if (is_visible_) - preview_.copy_to_widget(*videoWidget); + preview_.copy_to_widget(*video_widget_); update_fps( std::chrono::duration_cast<std::chrono::milliseconds>( @@ -1056,7 +1057,7 @@ void neuralnet_tracker::run() } -cv::Mat neuralnet_tracker::prepare_input_image(const video::frame& frame) +cv::Mat NeuralNetTracker::prepare_input_image(const video::frame& frame) { auto img = cv::Mat(frame.height, frame.width, CV_8UC(frame.channels), (void*)frame.data, frame.stride); @@ -1083,23 +1084,23 @@ cv::Mat neuralnet_tracker::prepare_input_image(const video::frame& frame) } -void neuralnet_tracker::update_fps(double dt) +void NeuralNetTracker::update_fps(double dt) { const double alpha = dt/(dt + RC); if (dt > 1e-6) { QMutexLocker lck{&stats_mtx_}; - fps *= 1 - alpha; - fps += alpha * 1./dt; + fps_ *= 1 - alpha; + fps_ += alpha * 1./dt; } } -void neuralnet_tracker::data(double *data) +void NeuralNetTracker::data(double *data) { Affine tmp = [&]() { - QMutexLocker lck(&mtx); + QMutexLocker lck(&mtx_); return pose_; }(); @@ -1124,29 +1125,29 @@ void neuralnet_tracker::data(double *data) } -Affine neuralnet_tracker::pose() +Affine NeuralNetTracker::pose() { - QMutexLocker lck(&mtx); + QMutexLocker lck(&mtx_); return pose_; } -std::tuple<cv::Size,double, double> neuralnet_tracker::stats() const +std::tuple<cv::Size,double, double> NeuralNetTracker::stats() const { QMutexLocker lck(&stats_mtx_); - return { resolution_, fps, inference_time_ }; + return { resolution_, fps_, inference_time_ }; } -void neuralnet_dialog::make_fps_combobox() +void NeuralNetDialog::make_fps_combobox() { for (int k = 0; k < fps_MAX; k++) { const int hz = enum_to_fps(k); const QString name = (hz == 0) ? tr("Default") : QString::number(hz); - ui.cameraFPS->addItem(name, k); + ui_.cameraFPS->addItem(name, k); } } -void neuralnet_dialog::make_resolution_combobox() +void NeuralNetDialog::make_resolution_combobox() { int k=0; for (const auto [w, h] : resolution_choices) @@ -1154,125 +1155,125 @@ void neuralnet_dialog::make_resolution_combobox() const QString s = (w == 0) ? tr("Default") : QString::number(w) + " x " + QString::number(h); - ui.resolution->addItem(s, k++); + ui_.resolution->addItem(s, k++); } } -neuralnet_dialog::neuralnet_dialog() : - trans_calib(1, 2) +NeuralNetDialog::NeuralNetDialog() : + trans_calib_(1, 2) { - ui.setupUi(this); + ui_.setupUi(this); make_fps_combobox(); make_resolution_combobox(); for (const auto& str : video::camera_names()) - ui.cameraName->addItem(str); + ui_.cameraName->addItem(str); - tie_setting(settings.camera_name, ui.cameraName); - tie_setting(settings.fov, ui.cameraFOV); - tie_setting(settings.offset_fwd, ui.tx_spin); - tie_setting(settings.offset_up, ui.ty_spin); - tie_setting(settings.offset_right, ui.tz_spin); - tie_setting(settings.show_network_input, ui.showNetworkInput); - tie_setting(settings.roi_filter_alpha, ui.roiFilterAlpha); - tie_setting(settings.use_mjpeg, ui.use_mjpeg); - tie_setting(settings.roi_zoom, ui.roiZoom); - tie_setting(settings.num_threads, ui.threadCount); - tie_setting(settings.resolution, ui.resolution); - tie_setting(settings.force_fps, ui.cameraFPS); + tie_setting(settings_.camera_name, ui_.cameraName); + tie_setting(settings_.fov, ui_.cameraFOV); + tie_setting(settings_.offset_fwd, ui_.tx_spin); + tie_setting(settings_.offset_up, ui_.ty_spin); + tie_setting(settings_.offset_right, ui_.tz_spin); + tie_setting(settings_.show_network_input, ui_.showNetworkInput); + tie_setting(settings_.roi_filter_alpha, ui_.roiFilterAlpha); + tie_setting(settings_.use_mjpeg, ui_.use_mjpeg); + tie_setting(settings_.roi_zoom, ui_.roiZoom); + tie_setting(settings_.num_threads, ui_.threadCount); + tie_setting(settings_.resolution, ui_.resolution); + tie_setting(settings_.force_fps, ui_.cameraFPS); - connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK())); - connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel())); - connect(ui.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings())); + connect(ui_.buttonBox, SIGNAL(accepted()), this, SLOT(doOK())); + connect(ui_.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel())); + connect(ui_.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings())); - connect(&settings.camera_name, value_::value_changed<QString>(), this, &neuralnet_dialog::update_camera_settings_state); + connect(&settings_.camera_name, value_::value_changed<QString>(), this, &NeuralNetDialog::update_camera_settings_state); - update_camera_settings_state(settings.camera_name); + update_camera_settings_state(settings_.camera_name); - connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step); - calib_timer.setInterval(35); - connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool))); + connect(&calib_timer_, &QTimer::timeout, this, &NeuralNetDialog::trans_calib_step); + calib_timer_.setInterval(35); + connect(ui_.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool))); - connect(&tracker_status_poll_timer, &QTimer::timeout, this, &neuralnet_dialog::status_poll); - tracker_status_poll_timer.setInterval(250); - tracker_status_poll_timer.start(); + connect(&tracker_status_poll_timer_, &QTimer::timeout, this, &NeuralNetDialog::status_poll); + tracker_status_poll_timer_.setInterval(250); + tracker_status_poll_timer_.start(); } -void neuralnet_dialog::doOK() +void NeuralNetDialog::doOK() { - settings.b->save(); + settings_.b->save(); close(); } -void neuralnet_dialog::doCancel() +void NeuralNetDialog::doCancel() { close(); } -void neuralnet_dialog::camera_settings() +void NeuralNetDialog::camera_settings() { - if (tracker) + if (tracker_) { - QMutexLocker l(&tracker->camera_mtx); - (void)tracker->camera->show_dialog(); + QMutexLocker l(&tracker_->camera_mtx_); + (void)tracker_->camera_->show_dialog(); } else - (void)video::show_dialog(settings.camera_name); + (void)video::show_dialog(settings_.camera_name); } -void neuralnet_dialog::update_camera_settings_state(const QString& name) +void NeuralNetDialog::update_camera_settings_state(const QString& name) { (void)name; - ui.camera_settings->setEnabled(true); + ui_.camera_settings->setEnabled(true); } -void neuralnet_dialog::register_tracker(ITracker * x) +void NeuralNetDialog::register_tracker(ITracker * x) { - tracker = static_cast<neuralnet_tracker*>(x); - ui.tcalib_button->setEnabled(true); + tracker_ = static_cast<NeuralNetTracker*>(x); + ui_.tcalib_button->setEnabled(true); } -void neuralnet_dialog::unregister_tracker() +void NeuralNetDialog::unregister_tracker() { - tracker = nullptr; - ui.tcalib_button->setEnabled(false); + tracker_ = nullptr; + ui_.tcalib_button->setEnabled(false); } -void neuralnet_dialog::status_poll() +void NeuralNetDialog::status_poll() { QString status; - if (!tracker) + if (!tracker_) { status = tr("Tracker Offline"); } else { - auto [ res, fps, inference_time ] = tracker->stats(); + auto [ res, fps, inference_time ] = tracker_->stats(); status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(int(inference_time)); } - ui.resolution_display->setText(status); + ui_.resolution_display->setText(status); } -void neuralnet_dialog::trans_calib_step() +void NeuralNetDialog::trans_calib_step() { - if (tracker) + if (tracker_) { const Affine X_CM = [&]() { - QMutexLocker l(&calibrator_mutex); - return tracker->pose(); + QMutexLocker l(&calibrator_mutex_); + return tracker_->pose(); }(); - trans_calib.update(X_CM.R, X_CM.t); - auto [_, nsamples] = trans_calib.get_estimate(); + trans_calib_.update(X_CM.R, X_CM.t); + auto [_, nsamples] = trans_calib_.get_estimate(); constexpr int min_yaw_samples = 15; constexpr int min_pitch_samples = 12; @@ -1291,47 +1292,47 @@ void neuralnet_dialog::trans_calib_step() const int nsamples_total = nsamples[0] + nsamples[1]; sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples); } - ui.sample_count_display->setText(sample_feedback); + ui_.sample_count_display->setText(sample_feedback); } else startstop_trans_calib(false); } -void neuralnet_dialog::startstop_trans_calib(bool start) +void NeuralNetDialog::startstop_trans_calib(bool start) { - QMutexLocker l(&calibrator_mutex); + QMutexLocker l(&calibrator_mutex_); // FIXME: does not work ... if (start) { qDebug() << "pt: starting translation calibration"; - calib_timer.start(); - trans_calib.reset(); - ui.sample_count_display->setText(QString()); + calib_timer_.start(); + trans_calib_.reset(); + ui_.sample_count_display->setText(QString()); // Tracker must run with zero'ed offset for calibration. - settings.offset_fwd = 0; - settings.offset_up = 0; - settings.offset_right = 0; + settings_.offset_fwd = 0; + settings_.offset_up = 0; + settings_.offset_right = 0; } else { - calib_timer.stop(); + calib_timer_.stop(); qDebug() << "pt: stopping translation calibration"; { - auto [tmp, nsamples] = trans_calib.get_estimate(); - settings.offset_fwd = int(tmp[0]); - settings.offset_up = int(tmp[1]); - settings.offset_right = int(tmp[2]); + auto [tmp, nsamples] = trans_calib_.get_estimate(); + settings_.offset_fwd = int(tmp[0]); + settings_.offset_up = int(tmp[1]); + settings_.offset_right = int(tmp[2]); } } - ui.tx_spin->setEnabled(!start); - ui.ty_spin->setEnabled(!start); - ui.tz_spin->setEnabled(!start); + ui_.tx_spin->setEnabled(!start); + ui_.ty_spin->setEnabled(!start); + ui_.tz_spin->setEnabled(!start); if (start) - ui.tcalib_button->setText(tr("Stop calibration")); + ui_.tcalib_button->setText(tr("Stop calibration")); else - ui.tcalib_button->setText(tr("Start calibration")); + ui_.tcalib_button->setText(tr("Start calibration")); } @@ -1339,4 +1340,4 @@ Settings::Settings() : opts("neuralnet-tracker") {} } // neuralnet_tracker_ns -OPENTRACK_DECLARE_TRACKER(neuralnet_tracker, neuralnet_dialog, neuralnet_metadata) +OPENTRACK_DECLARE_TRACKER(NeuralNetTracker, NeuralNetDialog, NeuralNetMetadata) |