summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
diff options
context:
space:
mode:
authorMichael Welter <michael@welter-4d.de>2022-05-18 22:15:02 +0200
committerMichael Welter <michael@welter-4d.de>2022-05-19 20:47:11 +0200
commite3de47abc3eba2d1cebc94943a203623c6545f3f (patch)
tree72716f134ddb363c17f00bee9d854beb9387b621 /tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
parente1d17f2d413de5f548931eaf9dfed2155e830096 (diff)
tracker/nn: Use postfix underscore to indicate class member variables
Diffstat (limited to 'tracker-neuralnet/ftnoir_tracker_neuralnet.cpp')
-rw-r--r--tracker-neuralnet/ftnoir_tracker_neuralnet.cpp491
1 files changed, 246 insertions, 245 deletions
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
index 352baf29..5439b38e 100644
--- a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
+++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
@@ -320,49 +320,49 @@ int enum_to_fps(int value)
Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
- session{std::move(session)},
- scaled_frame(input_img_height, input_img_width, CV_8U),
- input_mat(input_img_height, input_img_width, CV_32F)
+ session_{std::move(session)},
+ scaled_frame_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_8U),
+ input_mat_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_32F)
{
// Only works when input_mat does not reallocated memory ...which it should not.
// Non-owning memory reference to input_mat?
// Note: shape = (bach x channels x h x w)
- const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
- input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);
+ const std::int64_t input_shape[4] = { 1, 1, INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH };
+ input_val_ = Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4);
const std::int64_t output_shape[2] = { 1, 5 };
- output_val = Ort::Value::CreateTensor<float>(allocator_info, results.data(), results.size(), output_shape, 2);
+ output_val_ = Ort::Value::CreateTensor<float>(allocator_info, results_.data(), results_.size(), output_shape, 2);
}
std::pair<float, cv::Rect2f> Localizer::run(
const cv::Mat &frame)
{
- auto p = input_mat.ptr(0);
+ auto p = input_mat_.ptr(0);
- cv::resize(frame, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);
- scaled_frame.convertTo(input_mat, CV_32F, 1./255., -0.5);
+ cv::resize(frame, scaled_frame_, { INPUT_IMG_WIDTH, INPUT_IMG_HEIGHT }, 0, 0, cv::INTER_AREA);
+ scaled_frame_.convertTo(input_mat_, CV_32F, 1./255., -0.5);
- assert (input_mat.ptr(0) == p);
- assert (!input_mat.empty() && input_mat.isContinuous());
- assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);
+ assert (input_mat_.ptr(0) == p);
+ assert (!input_mat_.empty() && input_mat_.isContinuous());
+ assert (input_mat_.cols == INPUT_IMG_WIDTH && input_mat_.rows == INPUT_IMG_HEIGHT);
const char* input_names[] = {"x"};
const char* output_names[] = {"logit_box"};
Timer t; t.start();
- session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, &output_val, 1);
+ session_.Run(Ort::RunOptions{nullptr}, input_names, &input_val_, 1, output_names, &output_val_, 1);
- last_inference_time = t.elapsed_ms();
+ last_inference_time_ = t.elapsed_ms();
const cv::Rect2f roi = unnormalize(cv::Rect2f{
- results[1],
- results[2],
- results[3]-results[1], // Width
- results[4]-results[2] // Height
+ results_[1],
+ results_[2],
+ results_[3]-results_[1], // Width
+ results_[4]-results_[2] // Height
}, frame.rows, frame.cols);
- const float score = sigmoid(results[0]);
+ const float score = sigmoid(results_[0]);
return { score, roi };
}
@@ -370,90 +370,91 @@ std::pair<float, cv::Rect2f> Localizer::run(
double Localizer::last_inference_time_millis() const
{
- return last_inference_time;
+ return last_inference_time_;
}
PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&_session)
- : model_version{_session.GetModelMetadata().GetVersion()}
- , session{std::move(_session)}
- , allocator{session, allocator_info}
+ : model_version_{_session.GetModelMetadata().GetVersion()}
+ , session_{std::move(_session)}
+ , allocator_{session_, allocator_info}
{
using namespace std::literals::string_literals;
- if (session.GetOutputCount() < 2)
+ if (session_.GetOutputCount() < 2)
throw std::runtime_error("Invalid Model: must have at least two outputs");
- // WARNING
+ // WARNING UB .. but still ...
// If the model was saved without meta data, it seems the version field is uninitialized.
// In that case reading from it is UB. However, we will just get same arbitrary number
// which is hopefully different from the numbers used by models where the version is set.
- if (model_version != 2)
- model_version = 1;
+ // I.e., this is what happended in practice so far.
+ if (model_version_ != 2)
+ model_version_ = 1;
- const cv::Size input_image_shape = get_input_image_shape(session);
+ const cv::Size input_image_shape = get_input_image_shape(session_);
- scaled_frame = cv::Mat(input_image_shape, CV_8U);
- input_mat = cv::Mat(input_image_shape, CV_32F);
+ scaled_frame_ = cv::Mat(input_image_shape, CV_8U);
+ input_mat_ = cv::Mat(input_image_shape, CV_32F);
{
const std::int64_t input_shape[4] = { 1, 1, input_image_shape.height, input_image_shape.width };
- input_val.push_back(
- Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4));
+ input_val_.push_back(
+ Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4));
}
{
const std::int64_t output_shape[2] = { 1, 3 };
- output_val.push_back(Ort::Value::CreateTensor<float>(
- allocator_info, &output_coord[0], output_coord.rows, output_shape, 2));
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, &output_coord_[0], output_coord_.rows, output_shape, 2));
}
{
const std::int64_t output_shape[2] = { 1, 4 };
- output_val.push_back(Ort::Value::CreateTensor<float>(
- allocator_info, &output_quat[0], output_quat.rows, output_shape, 2));
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, &output_quat_[0], output_quat_.rows, output_shape, 2));
}
size_t num_regular_outputs = 2;
- if (session.GetOutputCount() >= 3 && "box"s == session.GetOutputName(2, allocator))
+ if (session_.GetOutputCount() >= 3 && "box"s == session_.GetOutputName(2, allocator_))
{
const std::int64_t output_shape[2] = { 1, 4 };
- output_val.push_back(Ort::Value::CreateTensor<float>(
- allocator_info, &output_box[0], output_box.rows, output_shape, 2));
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, &output_box_[0], output_box_.rows, output_shape, 2));
++num_regular_outputs;
qDebug() << "Note: Legacy model output for face ROI is currently ignored";
}
- num_recurrent_states = session.GetInputCount()-1;
- if (session.GetOutputCount()-num_regular_outputs != num_recurrent_states)
+ num_recurrent_states_ = session_.GetInputCount()-1;
+ if (session_.GetOutputCount()-num_regular_outputs != num_recurrent_states_)
throw std::runtime_error("Invalid Model: After regular inputs and outputs the model must have equal number of inputs and outputs for tensors holding hidden states of recurrent layers.");
// Create tensors for recurrent state
- for (size_t i = 0; i < num_recurrent_states; ++i)
+ for (size_t i = 0; i < num_recurrent_states_; ++i)
{
- const auto& input_info = session.GetInputTypeInfo(1+i);
- const auto& output_info = session.GetOutputTypeInfo(num_regular_outputs+i);
+ const auto& input_info = session_.GetInputTypeInfo(1+i);
+ const auto& output_info = session_.GetOutputTypeInfo(num_regular_outputs+i);
if (input_info.GetTensorTypeAndShapeInfo().GetShape() !=
output_info.GetTensorTypeAndShapeInfo().GetShape())
throw std::runtime_error("Invalid Model: Tensors for recurrent hidden states should have same shape on intput and output");
- input_val.push_back(create_tensor(input_info, allocator));
- output_val.push_back(create_tensor(output_info, allocator));
+ input_val_.push_back(create_tensor(input_info, allocator_));
+ output_val_.push_back(create_tensor(output_info, allocator_));
}
- for (size_t i = 0; i < session.GetInputCount(); ++i)
+ for (size_t i = 0; i < session_.GetInputCount(); ++i)
{
- input_names.push_back(session.GetInputName(i, allocator));
+ input_names_.push_back(session_.GetInputName(i, allocator_));
}
- for (size_t i = 0; i < session.GetOutputCount(); ++i)
+ for (size_t i = 0; i < session_.GetOutputCount(); ++i)
{
- output_names.push_back(session.GetOutputName(i, allocator));
+ output_names_.push_back(session_.GetOutputName(i, allocator_));
}
- qDebug() << "Model inputs: " << session.GetInputCount() << ", outputs: " << session.GetOutputCount() << ", recurrent states: " << num_recurrent_states;
+ qDebug() << "Model inputs: " << session_.GetInputCount() << ", outputs: " << session_.GetOutputCount() << ", recurrent states: " << num_recurrent_states_;
- assert (input_names.size() == input_val.size());
- assert (output_names.size() == output_val.size());
+ assert (input_names_.size() == input_val_.size());
+ assert (output_names_.size() == output_val_.size());
}
@@ -464,9 +465,9 @@ int PoseEstimator::find_input_intensity_90_pct_quantile() const
float range[] = { 0, 256 };
const float* ranges[] = { range };
cv::Mat hist;
- cv::calcHist(&scaled_frame, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
+ cv::calcHist(&scaled_frame_, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
int gray_level = 0;
- const int num_pixels_quantile = scaled_frame.total()*0.9f;
+ const int num_pixels_quantile = scaled_frame_.total()*0.9f;
int num_pixels_accum = 0;
for (int i=0; i<hist_size[0]; ++i)
{
@@ -498,33 +499,33 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
if (cropped.rows != patch_size || cropped.cols != patch_size)
return {};
- auto p = input_mat.ptr(0);
+ auto p = input_mat_.ptr(0);
- cv::resize(cropped, scaled_frame, scaled_frame.size(), 0, 0, cv::INTER_AREA);
+ cv::resize(cropped, scaled_frame_, scaled_frame_.size(), 0, 0, cv::INTER_AREA);
// Automatic brightness amplification.
const int brightness = find_input_intensity_90_pct_quantile();
const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255;
const double beta = -0.5;
- scaled_frame.convertTo(input_mat, CV_32F, alpha, beta);
+ scaled_frame_.convertTo(input_mat_, CV_32F, alpha, beta);
- assert (input_mat.ptr(0) == p);
- assert (!input_mat.empty() && input_mat.isContinuous());
+ assert (input_mat_.ptr(0) == p);
+ assert (!input_mat_.empty() && input_mat_.isContinuous());
Timer t; t.start();
try
{
- session.Run(
+ session_.Run(
Ort::RunOptions{ nullptr },
- input_names.data(),
- input_val.data(),
- input_val.size(),
- output_names.data(),
- output_val.data(),
- output_val.size());
+ input_names_.data(),
+ input_val_.data(),
+ input_val_.size(),
+ output_names_.data(),
+ output_val_.data(),
+ output_val_.size());
}
catch (const Ort::Exception &e)
{
@@ -532,14 +533,14 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
return {};
}
- for (size_t i = 0; i<num_recurrent_states; ++i)
+ for (size_t i = 0; i<num_recurrent_states_; ++i)
{
// Next step, the current output becomes the input.
// Thus we realize the recurrent connection.
// Only swaps the internal pointers. There is no copy of data.
std::swap(
- output_val[output_val.size()-num_recurrent_states+i],
- input_val[input_val.size()-num_recurrent_states+i]);
+ output_val_[output_val_.size()-num_recurrent_states_+i],
+ input_val_[input_val_.size()-num_recurrent_states_+i]);
}
// FIXME: Execution time fluctuates wildly. 19 to 26 msec. Why?
@@ -547,35 +548,35 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
// issue. The ONNX api suggests that tensor are allocated in an
// arena. Does that matter? Maybe the issue is something else?
- last_inference_time = t.elapsed_ms();
+ last_inference_time_ = t.elapsed_ms();
// Perform coordinate transformation.
// From patch-local normalized in [-1,1] to
// frame unnormalized pixel coordinatesettings.
const cv::Point2f center = patch_center +
- (0.5f*patch_size)*cv::Point2f{output_coord[0], output_coord[1]};
+ (0.5f*patch_size)*cv::Point2f{output_coord_[0], output_coord_[1]};
- const float size = patch_size*0.5f*output_coord[2];
+ const float size = patch_size*0.5f*output_coord_[2];
// Following Eigen which uses quat components in the order w, x, y, z.
quat rotation = {
- output_quat[3],
- output_quat[0],
- output_quat[1],
- output_quat[2] };
+ output_quat_[3],
+ output_quat_[0],
+ output_quat_[1],
+ output_quat_[2] };
- if (model_version < 2)
+ if (model_version_ < 2)
{
// Due to a change in coordinate conventions
rotation = world_to_image(rotation);
}
const cv::Rect2f outbox = {
- patch_center.x + (0.5f*patch_size)*output_box[0],
- patch_center.y + (0.5f*patch_size)*output_box[1],
- 0.5f*patch_size*(output_box[2]-output_box[0]),
- 0.5f*patch_size*(output_box[3]-output_box[1])
+ patch_center.x + (0.5f*patch_size)*output_box_[0],
+ patch_center.y + (0.5f*patch_size)*output_box_[1],
+ 0.5f*patch_size*(output_box_[2]-output_box_[0]),
+ 0.5f*patch_size*(output_box_[3]-output_box_[1])
};
return std::optional<Face>({
@@ -587,9 +588,9 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
cv::Mat PoseEstimator::last_network_input() const
{
cv::Mat ret;
- if (!input_mat.empty())
+ if (!input_mat_.empty())
{
- input_mat.convertTo(ret, CV_8U, 255., 127.);
+ input_mat_.convertTo(ret, CV_8U, 255., 127.);
cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
}
return ret;
@@ -598,11 +599,11 @@ cv::Mat PoseEstimator::last_network_input() const
double PoseEstimator::last_inference_time_millis() const
{
- return last_inference_time;
+ return last_inference_time_;
}
-bool neuralnet_tracker::detect()
+bool NeuralNetTracker::detect()
{
double inference_time = 0.;
@@ -613,35 +614,35 @@ bool neuralnet_tracker::detect()
} };
// Note: BGR colors!
- if (!last_localizer_roi || !last_roi ||
- iou(*last_localizer_roi,*last_roi)<0.25)
+ if (!last_localizer_roi_ || !last_roi_ ||
+ iou(*last_localizer_roi_,*last_roi_)<0.25)
{
- auto [p, rect] = localizer->run(grayscale_);
- inference_time += localizer->last_inference_time_millis();
+ auto [p, rect] = localizer_->run(grayscale_);
+ inference_time += localizer_->last_inference_time_millis();
if (p > 0.5 || rect.height < 5 || rect.width < 5)
{
- last_localizer_roi = rect;
- last_roi = rect;
+ last_localizer_roi_ = rect;
+ last_roi_ = rect;
}
else
{
- last_roi.reset();
- last_localizer_roi.reset();
+ last_roi_.reset();
+ last_localizer_roi_.reset();
}
}
- if (!last_roi)
+ if (!last_roi_)
{
draw_gizmos({}, {});
return false;
}
- auto face = poseestimator->run(grayscale_, *last_roi);
- inference_time += poseestimator->last_inference_time_millis();
+ auto face = poseestimator_->run(grayscale_, *last_roi_);
+ inference_time += poseestimator_->last_inference_time_millis();
if (!face)
{
- last_roi.reset();
+ last_roi_.reset();
draw_gizmos(*face, {});
return false;
}
@@ -653,7 +654,7 @@ bool neuralnet_tracker::detect()
// been tweaked so that it works pretty well.
// In old behaviour ROI is taken from the model outputs
const vec3 offset = rotate_vec(face->rotation, vec3{0.f, 0.1f*face->size, face->size*0.3f});
- const float halfsize = face->size/float(settings.roi_zoom);
+ const float halfsize = face->size/float(settings_.roi_zoom);
face->box = cv::Rect2f(
face->center.x + offset[0] - halfsize,
face->center.y + offset[1] - halfsize,
@@ -662,14 +663,14 @@ bool neuralnet_tracker::detect()
);
}
- last_roi = ewa_filter(*last_roi, face->box, float(settings.roi_filter_alpha));
+ last_roi_ = ewa_filter(*last_roi_, face->box, float(settings_.roi_filter_alpha));
Affine pose = compute_pose(*face);
draw_gizmos(*face, pose);
{
- QMutexLocker lck(&mtx);
+ QMutexLocker lck(&mtx_);
this->pose_ = pose;
}
@@ -677,18 +678,18 @@ bool neuralnet_tracker::detect()
}
-void neuralnet_tracker::draw_gizmos(
+void NeuralNetTracker::draw_gizmos(
const std::optional<PoseEstimator::Face> &face,
const Affine& pose)
{
if (!is_visible_)
return;
- preview_.draw_gizmos(face, pose, last_roi, last_localizer_roi, world_to_image(pose.t, grayscale_.size(), intrinsics));
+ preview_.draw_gizmos(face, pose, last_roi_, last_localizer_roi_, world_to_image(pose.t, grayscale_.size(), intrinsics_));
- if (settings.show_network_input)
+ if (settings_.show_network_input)
{
- cv::Mat netinput = poseestimator->last_network_input();
+ cv::Mat netinput = poseestimator_->last_network_input();
preview_.overlay_netinput(netinput);
}
@@ -696,13 +697,13 @@ void neuralnet_tracker::draw_gizmos(
}
-Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const
+Affine NeuralNetTracker::compute_pose(const PoseEstimator::Face &face) const
{
// Compute the location the network outputs in 3d space.
const mat33 rot_correction = compute_rotation_correction(
normalize(face.center, grayscale_.rows, grayscale_.cols),
- intrinsics.focal_length_w);
+ intrinsics_.focal_length_w);
const mat33 m = rot_correction * quaternion_to_mat33(
image_to_world(face.rotation));
@@ -721,18 +722,18 @@ Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const
*/
const vec3 face_world_pos = image_to_world(
- face.center.x, face.center.y, face.size, head_size_mm,
+ face.center.x, face.center.y, face.size, HEAD_SIZE_MM,
grayscale_.size(),
- intrinsics);
+ intrinsics_);
// But this is in general not the location of the rotation joint in the neck.
// So we need an extra offset. Which we determine by solving
// z,y,z-pos = head_joint_loc + R_face * offset
const vec3 pos = face_world_pos
+ m * vec3{
- static_cast<float>(settings.offset_fwd),
- static_cast<float>(settings.offset_up),
- static_cast<float>(settings.offset_right)};
+ static_cast<float>(settings_.offset_fwd),
+ static_cast<float>(settings_.offset_up),
+ static_cast<float>(settings_.offset_right)};
return { m, pos };
}
@@ -843,13 +844,13 @@ float Preview::transform(float s) const
}
-neuralnet_tracker::neuralnet_tracker()
+NeuralNetTracker::NeuralNetTracker()
{
opencv_init();
}
-neuralnet_tracker::~neuralnet_tracker()
+NeuralNetTracker::~NeuralNetTracker()
{
requestInterruption();
wait();
@@ -858,22 +859,22 @@ neuralnet_tracker::~neuralnet_tracker()
}
-module_status neuralnet_tracker::start_tracker(QFrame* videoframe)
+module_status NeuralNetTracker::start_tracker(QFrame* videoframe)
{
videoframe->show();
- videoWidget = std::make_unique<cv_video_widget>(videoframe);
- layout = std::make_unique<QHBoxLayout>();
- layout->setContentsMargins(0, 0, 0, 0);
- layout->addWidget(&*videoWidget);
- videoframe->setLayout(&*layout);
- videoWidget->show();
- num_threads = settings.num_threads;
+ video_widget_ = std::make_unique<cv_video_widget>(videoframe);
+ layout_ = std::make_unique<QHBoxLayout>();
+ layout_->setContentsMargins(0, 0, 0, 0);
+ layout_->addWidget(&*video_widget_);
+ videoframe->setLayout(&*layout_);
+ video_widget_->show();
+ num_threads_ = settings_.num_threads;
start();
return status_ok();
}
-bool neuralnet_tracker::load_and_initialize_model()
+bool NeuralNetTracker::load_and_initialize_model()
{
const QString localizer_model_path_enc =
OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx";
@@ -882,7 +883,7 @@ bool neuralnet_tracker::load_and_initialize_model()
try
{
- env = Ort::Env{
+ env_ = Ort::Env{
OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR,
"tracker-neuralnet"
};
@@ -890,17 +891,17 @@ bool neuralnet_tracker::load_and_initialize_model()
// Do thread settings here do anything?
// There is a warning which says to control number of threads via
// openmp settings. Which is what we do.
- opts.SetIntraOpNumThreads(num_threads);
+ opts.SetIntraOpNumThreads(num_threads_);
opts.SetInterOpNumThreads(1);
- allocator_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
+ allocator_info_ = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
- localizer.emplace(
- allocator_info,
- Ort::Session{env, convert(localizer_model_path_enc).c_str(), opts});
+ localizer_.emplace(
+ allocator_info_,
+ Ort::Session{env_, convert(localizer_model_path_enc).c_str(), opts});
- poseestimator.emplace(
- allocator_info,
- Ort::Session{env, convert(poseestimator_model_path_enc).c_str(), opts});
+ poseestimator_.emplace(
+ allocator_info_,
+ Ort::Session{env_, convert(poseestimator_model_path_enc).c_str(), opts});
}
catch (const Ort::Exception &e)
{
@@ -912,17 +913,17 @@ bool neuralnet_tracker::load_and_initialize_model()
}
-bool neuralnet_tracker::open_camera()
+bool NeuralNetTracker::open_camera()
{
- int rint = std::clamp(*settings.resolution, 0, (int)std::size(resolution_choices)-1);
+ int rint = std::clamp(*settings_.resolution, 0, (int)std::size(resolution_choices)-1);
resolution_tuple res = resolution_choices[rint];
- int fps = enum_to_fps(settings.force_fps);
+ int fps = enum_to_fps(settings_.force_fps);
- QMutexLocker l(&camera_mtx);
+ QMutexLocker l(&camera_mtx_);
- camera = video::make_camera(settings.camera_name);
+ camera_ = video::make_camera(settings_.camera_name);
- if (!camera)
+ if (!camera_)
return false;
video::impl::camera::info args {};
@@ -935,9 +936,9 @@ bool neuralnet_tracker::open_camera()
if (fps)
args.fps = fps;
- args.use_mjpeg = settings.use_mjpeg;
+ args.use_mjpeg = settings_.use_mjpeg;
- if (!camera->start(args))
+ if (!camera_->start(args))
{
qDebug() << "neuralnet tracker: can't open camera";
return false;
@@ -947,39 +948,39 @@ bool neuralnet_tracker::open_camera()
}
-void neuralnet_tracker::set_intrinsics()
+void NeuralNetTracker::set_intrinsics()
{
const int w = grayscale_.cols, h = grayscale_.rows;
- const double diag_fov = settings.fov * M_PI / 180.;
+ const double diag_fov = settings_.fov * M_PI / 180.;
const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w));
const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h));
const double focal_length_w = 1. / tan(.5 * fov_w);
const double focal_length_h = 1. / tan(.5 * fov_h);
- intrinsics.fov_h = fov_h;
- intrinsics.fov_w = fov_w;
- intrinsics.focal_length_w = focal_length_w;
- intrinsics.focal_length_h = focal_length_h;
+ intrinsics_.fov_h = fov_h;
+ intrinsics_.fov_w = fov_w;
+ intrinsics_.focal_length_w = focal_length_w;
+ intrinsics_.focal_length_h = focal_length_h;
}
class GuardedThreadCountSwitch
{
- int old_num_threads_cv = 1;
- int old_num_threads_omp = 1;
+ int old_num_threads_cv_ = 1;
+ int old_num_threads_omp_ = 1;
public:
GuardedThreadCountSwitch(int num_threads)
{
- old_num_threads_cv = cv::getNumThreads();
- old_num_threads_omp = omp_get_num_threads();
+ old_num_threads_cv_ = cv::getNumThreads();
+ old_num_threads_omp_ = omp_get_num_threads();
omp_set_num_threads(num_threads);
cv::setNumThreads(num_threads);
}
~GuardedThreadCountSwitch()
{
- omp_set_num_threads(old_num_threads_omp);
- cv::setNumThreads(old_num_threads_cv);
+ omp_set_num_threads(old_num_threads_omp_);
+ cv::setNumThreads(old_num_threads_cv_);
}
GuardedThreadCountSwitch(const GuardedThreadCountSwitch&) = delete;
@@ -987,11 +988,11 @@ class GuardedThreadCountSwitch
};
-void neuralnet_tracker::run()
+void NeuralNetTracker::run()
{
- preview_.init(*videoWidget);
+ preview_.init(*video_widget_);
- GuardedThreadCountSwitch switch_num_threads_to(num_threads);
+ GuardedThreadCountSwitch switch_num_threads_to(num_threads_);
if (!open_camera())
return;
@@ -1006,9 +1007,9 @@ void neuralnet_tracker::run()
is_visible_ = check_is_visible();
auto t = clk.now();
{
- QMutexLocker l(&camera_mtx);
+ QMutexLocker l(&camera_mtx_);
- auto [ img, res ] = camera->get_frame();
+ auto [ img, res ] = camera_->get_frame();
if (!res)
{
@@ -1047,7 +1048,7 @@ void neuralnet_tracker::run()
detect();
if (is_visible_)
- preview_.copy_to_widget(*videoWidget);
+ preview_.copy_to_widget(*video_widget_);
update_fps(
std::chrono::duration_cast<std::chrono::milliseconds>(
@@ -1056,7 +1057,7 @@ void neuralnet_tracker::run()
}
-cv::Mat neuralnet_tracker::prepare_input_image(const video::frame& frame)
+cv::Mat NeuralNetTracker::prepare_input_image(const video::frame& frame)
{
auto img = cv::Mat(frame.height, frame.width, CV_8UC(frame.channels), (void*)frame.data, frame.stride);
@@ -1083,23 +1084,23 @@ cv::Mat neuralnet_tracker::prepare_input_image(const video::frame& frame)
}
-void neuralnet_tracker::update_fps(double dt)
+void NeuralNetTracker::update_fps(double dt)
{
const double alpha = dt/(dt + RC);
if (dt > 1e-6)
{
QMutexLocker lck{&stats_mtx_};
- fps *= 1 - alpha;
- fps += alpha * 1./dt;
+ fps_ *= 1 - alpha;
+ fps_ += alpha * 1./dt;
}
}
-void neuralnet_tracker::data(double *data)
+void NeuralNetTracker::data(double *data)
{
Affine tmp = [&]()
{
- QMutexLocker lck(&mtx);
+ QMutexLocker lck(&mtx_);
return pose_;
}();
@@ -1124,29 +1125,29 @@ void neuralnet_tracker::data(double *data)
}
-Affine neuralnet_tracker::pose()
+Affine NeuralNetTracker::pose()
{
- QMutexLocker lck(&mtx);
+ QMutexLocker lck(&mtx_);
return pose_;
}
-std::tuple<cv::Size,double, double> neuralnet_tracker::stats() const
+std::tuple<cv::Size,double, double> NeuralNetTracker::stats() const
{
QMutexLocker lck(&stats_mtx_);
- return { resolution_, fps, inference_time_ };
+ return { resolution_, fps_, inference_time_ };
}
-void neuralnet_dialog::make_fps_combobox()
+void NeuralNetDialog::make_fps_combobox()
{
for (int k = 0; k < fps_MAX; k++)
{
const int hz = enum_to_fps(k);
const QString name = (hz == 0) ? tr("Default") : QString::number(hz);
- ui.cameraFPS->addItem(name, k);
+ ui_.cameraFPS->addItem(name, k);
}
}
-void neuralnet_dialog::make_resolution_combobox()
+void NeuralNetDialog::make_resolution_combobox()
{
int k=0;
for (const auto [w, h] : resolution_choices)
@@ -1154,125 +1155,125 @@ void neuralnet_dialog::make_resolution_combobox()
const QString s = (w == 0)
? tr("Default")
: QString::number(w) + " x " + QString::number(h);
- ui.resolution->addItem(s, k++);
+ ui_.resolution->addItem(s, k++);
}
}
-neuralnet_dialog::neuralnet_dialog() :
- trans_calib(1, 2)
+NeuralNetDialog::NeuralNetDialog() :
+ trans_calib_(1, 2)
{
- ui.setupUi(this);
+ ui_.setupUi(this);
make_fps_combobox();
make_resolution_combobox();
for (const auto& str : video::camera_names())
- ui.cameraName->addItem(str);
+ ui_.cameraName->addItem(str);
- tie_setting(settings.camera_name, ui.cameraName);
- tie_setting(settings.fov, ui.cameraFOV);
- tie_setting(settings.offset_fwd, ui.tx_spin);
- tie_setting(settings.offset_up, ui.ty_spin);
- tie_setting(settings.offset_right, ui.tz_spin);
- tie_setting(settings.show_network_input, ui.showNetworkInput);
- tie_setting(settings.roi_filter_alpha, ui.roiFilterAlpha);
- tie_setting(settings.use_mjpeg, ui.use_mjpeg);
- tie_setting(settings.roi_zoom, ui.roiZoom);
- tie_setting(settings.num_threads, ui.threadCount);
- tie_setting(settings.resolution, ui.resolution);
- tie_setting(settings.force_fps, ui.cameraFPS);
+ tie_setting(settings_.camera_name, ui_.cameraName);
+ tie_setting(settings_.fov, ui_.cameraFOV);
+ tie_setting(settings_.offset_fwd, ui_.tx_spin);
+ tie_setting(settings_.offset_up, ui_.ty_spin);
+ tie_setting(settings_.offset_right, ui_.tz_spin);
+ tie_setting(settings_.show_network_input, ui_.showNetworkInput);
+ tie_setting(settings_.roi_filter_alpha, ui_.roiFilterAlpha);
+ tie_setting(settings_.use_mjpeg, ui_.use_mjpeg);
+ tie_setting(settings_.roi_zoom, ui_.roiZoom);
+ tie_setting(settings_.num_threads, ui_.threadCount);
+ tie_setting(settings_.resolution, ui_.resolution);
+ tie_setting(settings_.force_fps, ui_.cameraFPS);
- connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
- connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
- connect(ui.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));
+ connect(ui_.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
+ connect(ui_.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
+ connect(ui_.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));
- connect(&settings.camera_name, value_::value_changed<QString>(), this, &neuralnet_dialog::update_camera_settings_state);
+ connect(&settings_.camera_name, value_::value_changed<QString>(), this, &NeuralNetDialog::update_camera_settings_state);
- update_camera_settings_state(settings.camera_name);
+ update_camera_settings_state(settings_.camera_name);
- connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step);
- calib_timer.setInterval(35);
- connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
+ connect(&calib_timer_, &QTimer::timeout, this, &NeuralNetDialog::trans_calib_step);
+ calib_timer_.setInterval(35);
+ connect(ui_.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
- connect(&tracker_status_poll_timer, &QTimer::timeout, this, &neuralnet_dialog::status_poll);
- tracker_status_poll_timer.setInterval(250);
- tracker_status_poll_timer.start();
+ connect(&tracker_status_poll_timer_, &QTimer::timeout, this, &NeuralNetDialog::status_poll);
+ tracker_status_poll_timer_.setInterval(250);
+ tracker_status_poll_timer_.start();
}
-void neuralnet_dialog::doOK()
+void NeuralNetDialog::doOK()
{
- settings.b->save();
+ settings_.b->save();
close();
}
-void neuralnet_dialog::doCancel()
+void NeuralNetDialog::doCancel()
{
close();
}
-void neuralnet_dialog::camera_settings()
+void NeuralNetDialog::camera_settings()
{
- if (tracker)
+ if (tracker_)
{
- QMutexLocker l(&tracker->camera_mtx);
- (void)tracker->camera->show_dialog();
+ QMutexLocker l(&tracker_->camera_mtx_);
+ (void)tracker_->camera_->show_dialog();
}
else
- (void)video::show_dialog(settings.camera_name);
+ (void)video::show_dialog(settings_.camera_name);
}
-void neuralnet_dialog::update_camera_settings_state(const QString& name)
+void NeuralNetDialog::update_camera_settings_state(const QString& name)
{
(void)name;
- ui.camera_settings->setEnabled(true);
+ ui_.camera_settings->setEnabled(true);
}
-void neuralnet_dialog::register_tracker(ITracker * x)
+void NeuralNetDialog::register_tracker(ITracker * x)
{
- tracker = static_cast<neuralnet_tracker*>(x);
- ui.tcalib_button->setEnabled(true);
+ tracker_ = static_cast<NeuralNetTracker*>(x);
+ ui_.tcalib_button->setEnabled(true);
}
-void neuralnet_dialog::unregister_tracker()
+void NeuralNetDialog::unregister_tracker()
{
- tracker = nullptr;
- ui.tcalib_button->setEnabled(false);
+ tracker_ = nullptr;
+ ui_.tcalib_button->setEnabled(false);
}
-void neuralnet_dialog::status_poll()
+void NeuralNetDialog::status_poll()
{
QString status;
- if (!tracker)
+ if (!tracker_)
{
status = tr("Tracker Offline");
}
else
{
- auto [ res, fps, inference_time ] = tracker->stats();
+ auto [ res, fps, inference_time ] = tracker_->stats();
status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(int(inference_time));
}
- ui.resolution_display->setText(status);
+ ui_.resolution_display->setText(status);
}
-void neuralnet_dialog::trans_calib_step()
+void NeuralNetDialog::trans_calib_step()
{
- if (tracker)
+ if (tracker_)
{
const Affine X_CM = [&]() {
- QMutexLocker l(&calibrator_mutex);
- return tracker->pose();
+ QMutexLocker l(&calibrator_mutex_);
+ return tracker_->pose();
}();
- trans_calib.update(X_CM.R, X_CM.t);
- auto [_, nsamples] = trans_calib.get_estimate();
+ trans_calib_.update(X_CM.R, X_CM.t);
+ auto [_, nsamples] = trans_calib_.get_estimate();
constexpr int min_yaw_samples = 15;
constexpr int min_pitch_samples = 12;
@@ -1291,47 +1292,47 @@ void neuralnet_dialog::trans_calib_step()
const int nsamples_total = nsamples[0] + nsamples[1];
sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples);
}
- ui.sample_count_display->setText(sample_feedback);
+ ui_.sample_count_display->setText(sample_feedback);
}
else
startstop_trans_calib(false);
}
-void neuralnet_dialog::startstop_trans_calib(bool start)
+void NeuralNetDialog::startstop_trans_calib(bool start)
{
- QMutexLocker l(&calibrator_mutex);
+ QMutexLocker l(&calibrator_mutex_);
// FIXME: does not work ...
if (start)
{
qDebug() << "pt: starting translation calibration";
- calib_timer.start();
- trans_calib.reset();
- ui.sample_count_display->setText(QString());
+ calib_timer_.start();
+ trans_calib_.reset();
+ ui_.sample_count_display->setText(QString());
// Tracker must run with zero'ed offset for calibration.
- settings.offset_fwd = 0;
- settings.offset_up = 0;
- settings.offset_right = 0;
+ settings_.offset_fwd = 0;
+ settings_.offset_up = 0;
+ settings_.offset_right = 0;
}
else
{
- calib_timer.stop();
+ calib_timer_.stop();
qDebug() << "pt: stopping translation calibration";
{
- auto [tmp, nsamples] = trans_calib.get_estimate();
- settings.offset_fwd = int(tmp[0]);
- settings.offset_up = int(tmp[1]);
- settings.offset_right = int(tmp[2]);
+ auto [tmp, nsamples] = trans_calib_.get_estimate();
+ settings_.offset_fwd = int(tmp[0]);
+ settings_.offset_up = int(tmp[1]);
+ settings_.offset_right = int(tmp[2]);
}
}
- ui.tx_spin->setEnabled(!start);
- ui.ty_spin->setEnabled(!start);
- ui.tz_spin->setEnabled(!start);
+ ui_.tx_spin->setEnabled(!start);
+ ui_.ty_spin->setEnabled(!start);
+ ui_.tz_spin->setEnabled(!start);
if (start)
- ui.tcalib_button->setText(tr("Stop calibration"));
+ ui_.tcalib_button->setText(tr("Stop calibration"));
else
- ui.tcalib_button->setText(tr("Start calibration"));
+ ui_.tcalib_button->setText(tr("Start calibration"));
}
@@ -1339,4 +1340,4 @@ Settings::Settings() : opts("neuralnet-tracker") {}
} // neuralnet_tracker_ns
-OPENTRACK_DECLARE_TRACKER(neuralnet_tracker, neuralnet_dialog, neuralnet_metadata)
+OPENTRACK_DECLARE_TRACKER(NeuralNetTracker, NeuralNetDialog, NeuralNetMetadata)