diff options
author | Stéphane Lenclud <github@lenclud.com> | 2019-04-01 20:18:02 +0200 |
---|---|---|
committer | Stéphane Lenclud <github@lenclud.com> | 2019-04-24 18:46:12 +0200 |
commit | 456a922b5995f1f836c13c5795258bc83e521571 (patch) | |
tree | 688b70cea01ad5abaf16a62f9c121f5b17086918 /tracker-points/point_tracker.cpp | |
parent | eb77f73826a26ad1dea84e3ea0173bb952a46e26 (diff) |
Easy Tracker: Preview cross hair now showing top point.
Deleting home made P3P solver we branched from pt now that our OpenCV solution is working.
Diffstat (limited to 'tracker-points/point_tracker.cpp')
-rw-r--r-- | tracker-points/point_tracker.cpp | 364 |
1 files changed, 0 insertions, 364 deletions
diff --git a/tracker-points/point_tracker.cpp b/tracker-points/point_tracker.cpp deleted file mode 100644 index e209938f..00000000 --- a/tracker-points/point_tracker.cpp +++ /dev/null @@ -1,364 +0,0 @@ -/* Copyright (c) 2012 Patrick Ruoff - * - * Permission to use, copy, modify, and/or distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - */ - -#include "point_tracker.h" -#include "compat/math-imports.hpp" - -#include <vector> -#include <algorithm> -#include <cmath> - -#include <QDebug> - -namespace pt_impl { - -using namespace numeric_types; - -static void get_row(const mat33& m, int i, vec3& v) -{ - v[0] = m(i,0); - v[1] = m(i,1); - v[2] = m(i,2); -} - -static void set_row(mat33& m, int i, const vec3& v) -{ - m(i,0) = v[0]; - m(i,1) = v[1]; - m(i,2) = v[2]; -} - -PointModel::PointModel(const pt_settings& s) -{ - set_model(s); - // calculate u - u = M01.cross(M02); - u = cv::normalize(u); - - // calculate projection matrix on M01,M02 plane - f s11 = M01.dot(M01); - f s12 = M01.dot(M02); - f s22 = M02.dot(M02); - P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11); -} - -void PointModel::set_model(const pt_settings& s) -{ - switch (s.active_model_panel) - { - default: - eval_once(qDebug() << "pt: wrong model type selected"); - [[fallthrough]]; - case Clip: - M01 = vec3(0, s.clip_ty, -s.clip_tz); - M02 = vec3(0, -s.clip_by, -s.clip_bz); - break; - case Cap: - M01 = vec3(-s.cap_x, -s.cap_y, -s.cap_z); - M02 = vec3(s.cap_x, -s.cap_y, -s.cap_z); - break; - case Custom: - M01 = vec3(s.m01_x, s.m01_y, s.m01_z); - M02 = vec3(s.m02_x, s.m02_y, s.m02_z); - break; - } -} - -void PointModel::get_d_order(const vec2* points, unsigned* d_order, const vec2& d) const -{ - constexpr unsigned cnt = PointModel::N_POINTS; - // fit line to orthographically projected points - using t = std::pair<f,unsigned>; - t d_vals[cnt]; - // get sort indices with respect to d scalar product - for (unsigned i = 0; i < cnt; ++i) - d_vals[i] = t(d.dot(points[i]), i); - - std::sort(d_vals, - d_vals + 3, - [](const t& a, const t& b) { return a.first < b.first; }); - - for (unsigned i = 0; i < cnt; ++i) - d_order[i] = d_vals[i].second; -} - - -PointTracker::PointTracker() = default; - -PointTracker::PointOrder PointTracker::find_correspondences_previous(const vec2* points, - const PointModel& model, - const pt_camera_info& info) -{ - const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y); - PointTracker::PointOrder p; - p[0] = project(vec3(0,0,0), fx); - p[1] = project(model.M01, fx); - p[2] = project(model.M02, fx); - - constexpr unsigned sz = PointModel::N_POINTS; - - // set correspondences by minimum distance to projected model point - bool point_taken[sz] {}; - - for (unsigned i=0; i < sz; ++i) - { - f min_sdist = 0; - unsigned min_idx = 0; - // find closest point to projected model point i - for (unsigned j=0; j < sz; ++j) - { - vec2 d = p[i]-points[j]; - f sdist = d.dot(d); - if (sdist < min_sdist || j == 0) - { - min_idx = j; - min_sdist = sdist; - } - } - - // if one point is closest to more than one model point, fallback - if (point_taken[min_idx]) - { - reset_state(); - return find_correspondences(points, model); - } - point_taken[min_idx] = true; - p[i] = points[min_idx]; - } - - return p; -} - -void PointTracker::track(const std::vector<vec2>& points, - const PointModel& model, - const pt_camera_info& info, - int init_phase_timeout) -{ - const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y); - PointOrder order; - - if (init_phase || init_phase_timeout <= 0 || t.elapsed_ms() > init_phase_timeout) - { - reset_state(); - order = find_correspondences(points.data(), model); - } - else - order = find_correspondences_previous(points.data(), model, info); - - if (POSIT(model, order, fx) != -1) - { - init_phase = false; - t.start(); - } - else - reset_state(); -} - -PointTracker::PointOrder PointTracker::find_correspondences(const vec2* points, const PointModel& model) -{ - constexpr unsigned cnt = PointModel::N_POINTS; - // We do a simple freetrack-like sorting in the init phase... - unsigned point_d_order[cnt]; - unsigned model_d_order[cnt]; - // calculate d and d_order for simple freetrack-like point correspondence - vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); - // sort points - model.get_d_order(points, point_d_order, d); - vec2 pts[cnt] { - { 0, 0 }, - { model.M01[0], model.M01[1] }, - { model.M02[0], model.M02[1] }, - }; - model.get_d_order(pts, model_d_order, d); - - // set correspondences - PointOrder p; - for (unsigned i = 0; i < cnt; ++i) - p[model_d_order[i]] = points[point_d_order[i]]; - - return p; -} - -#ifdef __clang__ -# pragma clang diagnostic push -# pragma clang diagnostic ignored "-Wfloat-equal" -#endif - -int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f focal_length) -{ - // POSIT algorithm for coplanar points as presented in - // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] - // we use the same notation as in the paper here - - // The expected rotation used for resolving the ambiguity in POSIT: - // In every iteration step the rotation closer to R_expected is taken - const mat33& R_expected{X_CM_expected.R}; - - // initial pose = last (predicted) pose - vec3 k; - get_row(R_expected, 2, k); - f Z0 = X_CM.t[2] < f(1e-4) ? f(1000) : X_CM.t[2]; - - f old_epsilon_1 = 0; - f old_epsilon_2 = 0; - f epsilon_1, epsilon_2; - - vec3 I0, J0; - vec2 I0_coeff, J0_coeff; - - vec3 I_1, J_1, I_2, J_2; - mat33 R_1, R_2; - mat33* R_current = &R_1; - - constexpr int max_iter = 100; - - int i; - for (i = 1; i < max_iter; ++i) - { - epsilon_1 = k.dot(model.M01)/Z0; - epsilon_2 = k.dot(model.M02)/Z0; - - // vector of scalar products <I0, M0i> and <J0, M0i> - vec2 I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0], - order[2][0]*(1 + epsilon_2) - order[0][0]); - vec2 J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1], - order[2][1]*(1 + epsilon_2) - order[0][1]); - - // construct projection of I, J onto M0i plane: I0 and J0 - I0_coeff = model.P * I0_M0i; - J0_coeff = model.P * J0_M0i; - I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; - J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; - - // calculate u component of I, J - f II0 = I0.dot(I0); - f IJ0 = I0.dot(J0); - f JJ0 = J0.dot(J0); - f rho, theta; - // CAVEAT don't change to comparison with an epsilon -sh 20160423 - if (JJ0 == II0) { - rho = sqrt(fabs(2*IJ0)); - theta = -pi/4; - if (IJ0<0) theta *= -1; - } - else { - rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); - theta = atan( -2*IJ0 / (JJ0-II0) ); - // avoid branch misprediction - theta += (JJ0 - II0 < 0) * pi; - theta *= f(.5); - } - - // construct the two solutions - I_1 = I0 + rho*cos(theta)*model.u; - I_2 = I0 - rho*cos(theta)*model.u; - - J_1 = J0 + rho*sin(theta)*model.u; - J_2 = J0 - rho*sin(theta)*model.u; - - f norm_const = (f)(1/cv::norm(I_1)); // all have the same norm - - // create rotation matrices - I_1 *= norm_const; J_1 *= norm_const; - I_2 *= norm_const; J_2 *= norm_const; - - set_row(R_1, 0, I_1); - set_row(R_1, 1, J_1); - set_row(R_1, 2, I_1.cross(J_1)); - - set_row(R_2, 0, I_2); - set_row(R_2, 1, J_2); - set_row(R_2, 2, I_2.cross(J_2)); - - // the single translation solution - Z0 = norm_const * focal_length; - - // pick the rotation solution closer to the expected one - // in simple metric d(A,B) = || I - A * B^T || - f R_1_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_1.t())); - f R_2_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_2.t())); - - if (R_1_deviation < R_2_deviation) - R_current = &R_1; - else - R_current = &R_2; - - get_row(*R_current, 2, k); - - // check for convergence condition - const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2); - - if (delta < eps) - break; - - old_epsilon_1 = epsilon_1; - old_epsilon_2 = epsilon_2; - } - - const f t[3] = { - order[0][0] * Z0/focal_length, - order[0][1] * Z0/focal_length, - Z0 - }; - const mat33& r = *R_current; - - for (int i = 0; i < 3; i++) - for (int j = 0; j < 3; j++) - { - int ret = std::fpclassify(r(i, j)); - if (ret == FP_NAN || ret == FP_INFINITE) - { - qDebug() << "posit nan R"; - return -1; - } - } - - for (unsigned i = 0; i < 3; i++) // NOLINT(modernize-loop-convert) - { - int ret = std::fpclassify(t[i]); - if (ret == FP_NAN || ret == FP_INFINITE) - { - qDebug() << "posit nan T"; - return -1; - } - } - - // apply results - X_CM.R = r; - X_CM.t[0] = t[0]; - X_CM.t[1] = t[1]; - X_CM.t[2] = t[2]; - - X_CM_expected = X_CM; - - //qDebug() << "iter:" << i; - - return i; -} - -#ifdef __clang__ -# pragma clang diagnostic pop -#endif - -vec2 PointTracker::project(const vec3& v_M, f focal_length) -{ - return project(v_M, focal_length, X_CM); -} - -vec2 PointTracker::project(const vec3& v_M, f focal_length, const Affine& X_CM) -{ - vec3 v_C = X_CM * v_M; - return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]); -} - -void PointTracker::reset_state() -{ - init_phase = true; - X_CM_expected = {}; -} - -} // ns pt_impl |