summaryrefslogtreecommitdiffhomepage
path: root/tracker-points/point_tracker.cpp
diff options
context:
space:
mode:
authorStéphane Lenclud <github@lenclud.com>2019-04-01 20:18:02 +0200
committerStéphane Lenclud <github@lenclud.com>2019-04-24 18:46:12 +0200
commit456a922b5995f1f836c13c5795258bc83e521571 (patch)
tree688b70cea01ad5abaf16a62f9c121f5b17086918 /tracker-points/point_tracker.cpp
parenteb77f73826a26ad1dea84e3ea0173bb952a46e26 (diff)
Easy Tracker: Preview cross hair now showing top point.
Deleting home made P3P solver we branched from pt now that our OpenCV solution is working.
Diffstat (limited to 'tracker-points/point_tracker.cpp')
-rw-r--r--tracker-points/point_tracker.cpp364
1 files changed, 0 insertions, 364 deletions
diff --git a/tracker-points/point_tracker.cpp b/tracker-points/point_tracker.cpp
deleted file mode 100644
index e209938f..00000000
--- a/tracker-points/point_tracker.cpp
+++ /dev/null
@@ -1,364 +0,0 @@
-/* Copyright (c) 2012 Patrick Ruoff
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- */
-
-#include "point_tracker.h"
-#include "compat/math-imports.hpp"
-
-#include <vector>
-#include <algorithm>
-#include <cmath>
-
-#include <QDebug>
-
-namespace pt_impl {
-
-using namespace numeric_types;
-
-static void get_row(const mat33& m, int i, vec3& v)
-{
- v[0] = m(i,0);
- v[1] = m(i,1);
- v[2] = m(i,2);
-}
-
-static void set_row(mat33& m, int i, const vec3& v)
-{
- m(i,0) = v[0];
- m(i,1) = v[1];
- m(i,2) = v[2];
-}
-
-PointModel::PointModel(const pt_settings& s)
-{
- set_model(s);
- // calculate u
- u = M01.cross(M02);
- u = cv::normalize(u);
-
- // calculate projection matrix on M01,M02 plane
- f s11 = M01.dot(M01);
- f s12 = M01.dot(M02);
- f s22 = M02.dot(M02);
- P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11);
-}
-
-void PointModel::set_model(const pt_settings& s)
-{
- switch (s.active_model_panel)
- {
- default:
- eval_once(qDebug() << "pt: wrong model type selected");
- [[fallthrough]];
- case Clip:
- M01 = vec3(0, s.clip_ty, -s.clip_tz);
- M02 = vec3(0, -s.clip_by, -s.clip_bz);
- break;
- case Cap:
- M01 = vec3(-s.cap_x, -s.cap_y, -s.cap_z);
- M02 = vec3(s.cap_x, -s.cap_y, -s.cap_z);
- break;
- case Custom:
- M01 = vec3(s.m01_x, s.m01_y, s.m01_z);
- M02 = vec3(s.m02_x, s.m02_y, s.m02_z);
- break;
- }
-}
-
-void PointModel::get_d_order(const vec2* points, unsigned* d_order, const vec2& d) const
-{
- constexpr unsigned cnt = PointModel::N_POINTS;
- // fit line to orthographically projected points
- using t = std::pair<f,unsigned>;
- t d_vals[cnt];
- // get sort indices with respect to d scalar product
- for (unsigned i = 0; i < cnt; ++i)
- d_vals[i] = t(d.dot(points[i]), i);
-
- std::sort(d_vals,
- d_vals + 3,
- [](const t& a, const t& b) { return a.first < b.first; });
-
- for (unsigned i = 0; i < cnt; ++i)
- d_order[i] = d_vals[i].second;
-}
-
-
-PointTracker::PointTracker() = default;
-
-PointTracker::PointOrder PointTracker::find_correspondences_previous(const vec2* points,
- const PointModel& model,
- const pt_camera_info& info)
-{
- const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
- PointTracker::PointOrder p;
- p[0] = project(vec3(0,0,0), fx);
- p[1] = project(model.M01, fx);
- p[2] = project(model.M02, fx);
-
- constexpr unsigned sz = PointModel::N_POINTS;
-
- // set correspondences by minimum distance to projected model point
- bool point_taken[sz] {};
-
- for (unsigned i=0; i < sz; ++i)
- {
- f min_sdist = 0;
- unsigned min_idx = 0;
- // find closest point to projected model point i
- for (unsigned j=0; j < sz; ++j)
- {
- vec2 d = p[i]-points[j];
- f sdist = d.dot(d);
- if (sdist < min_sdist || j == 0)
- {
- min_idx = j;
- min_sdist = sdist;
- }
- }
-
- // if one point is closest to more than one model point, fallback
- if (point_taken[min_idx])
- {
- reset_state();
- return find_correspondences(points, model);
- }
- point_taken[min_idx] = true;
- p[i] = points[min_idx];
- }
-
- return p;
-}
-
-void PointTracker::track(const std::vector<vec2>& points,
- const PointModel& model,
- const pt_camera_info& info,
- int init_phase_timeout)
-{
- const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
- PointOrder order;
-
- if (init_phase || init_phase_timeout <= 0 || t.elapsed_ms() > init_phase_timeout)
- {
- reset_state();
- order = find_correspondences(points.data(), model);
- }
- else
- order = find_correspondences_previous(points.data(), model, info);
-
- if (POSIT(model, order, fx) != -1)
- {
- init_phase = false;
- t.start();
- }
- else
- reset_state();
-}
-
-PointTracker::PointOrder PointTracker::find_correspondences(const vec2* points, const PointModel& model)
-{
- constexpr unsigned cnt = PointModel::N_POINTS;
- // We do a simple freetrack-like sorting in the init phase...
- unsigned point_d_order[cnt];
- unsigned model_d_order[cnt];
- // calculate d and d_order for simple freetrack-like point correspondence
- vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
- // sort points
- model.get_d_order(points, point_d_order, d);
- vec2 pts[cnt] {
- { 0, 0 },
- { model.M01[0], model.M01[1] },
- { model.M02[0], model.M02[1] },
- };
- model.get_d_order(pts, model_d_order, d);
-
- // set correspondences
- PointOrder p;
- for (unsigned i = 0; i < cnt; ++i)
- p[model_d_order[i]] = points[point_d_order[i]];
-
- return p;
-}
-
-#ifdef __clang__
-# pragma clang diagnostic push
-# pragma clang diagnostic ignored "-Wfloat-equal"
-#endif
-
-int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f focal_length)
-{
- // POSIT algorithm for coplanar points as presented in
- // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
- // we use the same notation as in the paper here
-
- // The expected rotation used for resolving the ambiguity in POSIT:
- // In every iteration step the rotation closer to R_expected is taken
- const mat33& R_expected{X_CM_expected.R};
-
- // initial pose = last (predicted) pose
- vec3 k;
- get_row(R_expected, 2, k);
- f Z0 = X_CM.t[2] < f(1e-4) ? f(1000) : X_CM.t[2];
-
- f old_epsilon_1 = 0;
- f old_epsilon_2 = 0;
- f epsilon_1, epsilon_2;
-
- vec3 I0, J0;
- vec2 I0_coeff, J0_coeff;
-
- vec3 I_1, J_1, I_2, J_2;
- mat33 R_1, R_2;
- mat33* R_current = &R_1;
-
- constexpr int max_iter = 100;
-
- int i;
- for (i = 1; i < max_iter; ++i)
- {
- epsilon_1 = k.dot(model.M01)/Z0;
- epsilon_2 = k.dot(model.M02)/Z0;
-
- // vector of scalar products <I0, M0i> and <J0, M0i>
- vec2 I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0],
- order[2][0]*(1 + epsilon_2) - order[0][0]);
- vec2 J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1],
- order[2][1]*(1 + epsilon_2) - order[0][1]);
-
- // construct projection of I, J onto M0i plane: I0 and J0
- I0_coeff = model.P * I0_M0i;
- J0_coeff = model.P * J0_M0i;
- I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
- J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
-
- // calculate u component of I, J
- f II0 = I0.dot(I0);
- f IJ0 = I0.dot(J0);
- f JJ0 = J0.dot(J0);
- f rho, theta;
- // CAVEAT don't change to comparison with an epsilon -sh 20160423
- if (JJ0 == II0) {
- rho = sqrt(fabs(2*IJ0));
- theta = -pi/4;
- if (IJ0<0) theta *= -1;
- }
- else {
- rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
- theta = atan( -2*IJ0 / (JJ0-II0) );
- // avoid branch misprediction
- theta += (JJ0 - II0 < 0) * pi;
- theta *= f(.5);
- }
-
- // construct the two solutions
- I_1 = I0 + rho*cos(theta)*model.u;
- I_2 = I0 - rho*cos(theta)*model.u;
-
- J_1 = J0 + rho*sin(theta)*model.u;
- J_2 = J0 - rho*sin(theta)*model.u;
-
- f norm_const = (f)(1/cv::norm(I_1)); // all have the same norm
-
- // create rotation matrices
- I_1 *= norm_const; J_1 *= norm_const;
- I_2 *= norm_const; J_2 *= norm_const;
-
- set_row(R_1, 0, I_1);
- set_row(R_1, 1, J_1);
- set_row(R_1, 2, I_1.cross(J_1));
-
- set_row(R_2, 0, I_2);
- set_row(R_2, 1, J_2);
- set_row(R_2, 2, I_2.cross(J_2));
-
- // the single translation solution
- Z0 = norm_const * focal_length;
-
- // pick the rotation solution closer to the expected one
- // in simple metric d(A,B) = || I - A * B^T ||
- f R_1_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_1.t()));
- f R_2_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_2.t()));
-
- if (R_1_deviation < R_2_deviation)
- R_current = &R_1;
- else
- R_current = &R_2;
-
- get_row(*R_current, 2, k);
-
- // check for convergence condition
- const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2);
-
- if (delta < eps)
- break;
-
- old_epsilon_1 = epsilon_1;
- old_epsilon_2 = epsilon_2;
- }
-
- const f t[3] = {
- order[0][0] * Z0/focal_length,
- order[0][1] * Z0/focal_length,
- Z0
- };
- const mat33& r = *R_current;
-
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- {
- int ret = std::fpclassify(r(i, j));
- if (ret == FP_NAN || ret == FP_INFINITE)
- {
- qDebug() << "posit nan R";
- return -1;
- }
- }
-
- for (unsigned i = 0; i < 3; i++) // NOLINT(modernize-loop-convert)
- {
- int ret = std::fpclassify(t[i]);
- if (ret == FP_NAN || ret == FP_INFINITE)
- {
- qDebug() << "posit nan T";
- return -1;
- }
- }
-
- // apply results
- X_CM.R = r;
- X_CM.t[0] = t[0];
- X_CM.t[1] = t[1];
- X_CM.t[2] = t[2];
-
- X_CM_expected = X_CM;
-
- //qDebug() << "iter:" << i;
-
- return i;
-}
-
-#ifdef __clang__
-# pragma clang diagnostic pop
-#endif
-
-vec2 PointTracker::project(const vec3& v_M, f focal_length)
-{
- return project(v_M, focal_length, X_CM);
-}
-
-vec2 PointTracker::project(const vec3& v_M, f focal_length, const Affine& X_CM)
-{
- vec3 v_C = X_CM * v_M;
- return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]);
-}
-
-void PointTracker::reset_state()
-{
- init_phase = true;
- X_CM_expected = {};
-}
-
-} // ns pt_impl