diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2015-10-30 07:37:41 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2015-10-30 08:39:32 +0100 |
commit | aa066bdd4622d4f6824fee864f6be6806813f04d (patch) | |
tree | 3df328b8b364cba2373a85827191b259bd78d546 /tracker-pt/point_tracker.cpp | |
parent | d6a54431d178632a2bf466c9904f74abd143afe6 (diff) |
move to subdirectory-based build system
Closes #224
Diffstat (limited to 'tracker-pt/point_tracker.cpp')
-rw-r--r-- | tracker-pt/point_tracker.cpp | 267 |
1 files changed, 267 insertions, 0 deletions
diff --git a/tracker-pt/point_tracker.cpp b/tracker-pt/point_tracker.cpp new file mode 100644 index 00000000..924b75de --- /dev/null +++ b/tracker-pt/point_tracker.cpp @@ -0,0 +1,267 @@ +/* Copyright (c) 2012 Patrick Ruoff + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + */ + +#include "point_tracker.h" + +#include <vector> +#include <algorithm> +#include <cmath> + +#include <QDebug> + +const float PI = 3.14159265358979323846f; + +static void get_row(const cv::Matx33f& m, int i, cv::Vec3f& v) +{ + v[0] = m(i,0); + v[1] = m(i,1); + v[2] = m(i,2); +} + +static void set_row(cv::Matx33f& m, int i, const cv::Vec3f& v) +{ + m(i,0) = v[0]; + m(i,1) = v[1]; + m(i,2) = v[2]; +} + +static bool d_vals_sort(const std::pair<float,int> a, const std::pair<float,int> b) +{ + return a.first < b.first; +} + +void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[], cv::Vec2f d) const +{ + // fit line to orthographically projected points + std::vector<std::pair<float,int>> d_vals; + // get sort indices with respect to d scalar product + for (unsigned i = 0; i<points.size(); ++i) + d_vals.push_back(std::pair<float, int>(d.dot(points[i]), i)); + + std::sort(d_vals.begin(), + d_vals.end(), + d_vals_sort + ); + + for (unsigned i = 0; i<points.size(); ++i) + d_order[i] = d_vals[i].second; +} + + +PointTracker::PointTracker() : init_phase(true) +{ +} + +PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel& model, float f) +{ + PointTracker::PointOrder p; + p.points[0] = project(cv::Vec3f(0,0,0), f); + p.points[1] = project(model.M01, f); + p.points[2] = project(model.M02, f); + + // set correspondences by minimum distance to projected model point + bool point_taken[PointModel::N_POINTS]; + for (int i=0; i<PointModel::N_POINTS; ++i) + point_taken[i] = false; + + for (int i=0; i<PointModel::N_POINTS; ++i) + { + float min_sdist = 0; + int min_idx = 0; + // find closest point to projected model point i + for (int j=0; j<PointModel::N_POINTS; ++j) + { + cv::Vec2f d = p.points[i]-points[j]; + float sdist = d.dot(d); + if (sdist < min_sdist || j==0) + { + min_idx = j; + min_sdist = sdist; + } + } + // if one point is closest to more than one model point, fallback + if (point_taken[min_idx]) + { + init_phase = true; + return find_correspondences(points, model); + } + point_taken[min_idx] = true; + p.points[i] = points[min_idx]; + } + return p; +} + +void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout) +{ + PointOrder order; + + if (t.elapsed_ms() > init_phase_timeout) + { + t.start(); + init_phase = true; + } + + if (!dynamic_pose || init_phase) + order = find_correspondences(points, model); + else + order = find_correspondences_previous(points, model, f); + + POSIT(model, order, f); + init_phase = false; + t.start(); +} + +PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, const PointModel& model) +{ + // We do a simple freetrack-like sorting in the init phase... + // sort points + int point_d_order[PointModel::N_POINTS]; + int model_d_order[PointModel::N_POINTS]; + cv::Vec2f d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); + model.get_d_order(points, point_d_order, d); + // calculate d and d_order for simple freetrack-like point correspondence + model.get_d_order(std::vector<cv::Vec2f> { + cv::Vec2f{0,0}, + cv::Vec2f(model.M01[0], model.M01[1]), + cv::Vec2f(model.M02[0], model.M02[1]) + }, + model_d_order, + d); + // set correspondences + PointOrder p; + for (int i=0; i<PointModel::N_POINTS; ++i) + p.points[model_d_order[i]] = points[point_d_order[i]]; + + return p; +} + +int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length) +{ + // POSIT algorithm for coplanar points as presented in + // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] + // we use the same notation as in the paper here + + // The expected rotation used for resolving the ambiguity in POSIT: + // In every iteration step the rotation closer to R_expected is taken + cv::Matx33f R_expected = cv::Matx33f::eye(); + + // initial pose = last (predicted) pose + cv::Vec3f k; + get_row(R_expected, 2, k); + float Z0 = 1000.f; + + float old_epsilon_1 = 0; + float old_epsilon_2 = 0; + float epsilon_1 = 1; + float epsilon_2 = 1; + + cv::Vec3f I0, J0; + cv::Vec2f I0_coeff, J0_coeff; + + cv::Vec3f I_1, J_1, I_2, J_2; + cv::Matx33f R_1, R_2; + cv::Matx33f* R_current; + + const int MAX_ITER = 100; + const float EPS_THRESHOLD = 1e-4; + + const cv::Vec2f* order = order_.points; + + int i=1; + for (; i<MAX_ITER; ++i) + { + epsilon_1 = k.dot(model.M01)/Z0; + epsilon_2 = k.dot(model.M02)/Z0; + + // vector of scalar products <I0, M0i> and <J0, M0i> + cv::Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0], + order[2][0]*(1.0 + epsilon_2) - order[0][0]); + cv::Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1], + order[2][1]*(1.0 + epsilon_2) - order[0][1]); + + // construct projection of I, J onto M0i plane: I0 and J0 + I0_coeff = model.P * I0_M0i; + J0_coeff = model.P * J0_M0i; + I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; + J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; + + // calculate u component of I, J + float II0 = I0.dot(I0); + float IJ0 = I0.dot(J0); + float JJ0 = J0.dot(J0); + float rho, theta; + if (JJ0 == II0) { + rho = std::sqrt(std::abs(2*IJ0)); + theta = -PI/4; + if (IJ0<0) theta *= -1; + } + else { + rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); + theta = atan( -2*IJ0 / (JJ0-II0) ); + if (JJ0 - II0 < 0) theta += PI; + theta /= 2; + } + + // construct the two solutions + I_1 = I0 + rho*cos(theta)*model.u; + I_2 = I0 - rho*cos(theta)*model.u; + + J_1 = J0 + rho*sin(theta)*model.u; + J_2 = J0 - rho*sin(theta)*model.u; + + float norm_const = 1.0/cv::norm(I_1); // all have the same norm + + // create rotation matrices + I_1 *= norm_const; J_1 *= norm_const; + I_2 *= norm_const; J_2 *= norm_const; + + set_row(R_1, 0, I_1); + set_row(R_1, 1, J_1); + set_row(R_1, 2, I_1.cross(J_1)); + + set_row(R_2, 0, I_2); + set_row(R_2, 1, J_2); + set_row(R_2, 2, I_2.cross(J_2)); + + // the single translation solution + Z0 = norm_const * focal_length; + + // pick the rotation solution closer to the expected one + // in simple metric d(A,B) = || I - A * B^T || + float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t()); + float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t()); + + if (R_1_deviation < R_2_deviation) + R_current = &R_1; + else + R_current = &R_2; + + get_row(*R_current, 2, k); + + // check for convergence condition + if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) + break; + old_epsilon_1 = epsilon_1; + old_epsilon_2 = epsilon_2; + } + + // apply results + X_CM.R = *R_current; + X_CM.t[0] = order[0][0] * Z0/focal_length; + X_CM.t[1] = order[0][1] * Z0/focal_length; + X_CM.t[2] = Z0; + + //qDebug() << "iter:" << i; + + return i; +} + +cv::Vec2f PointTracker::project(const cv::Vec3f& v_M, float f) +{ + cv::Vec3f v_C = X_CM * v_M; + return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]); +} |