summaryrefslogtreecommitdiffhomepage
path: root/tracker-pt
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2016-07-16 23:32:48 +0200
committerStanislaw Halik <sthalik@misaki.pl>2016-07-16 23:32:59 +0200
commit16bb3e13dd2a7ed8fa3652e313d592dd81c73a07 (patch)
tree8bd2f3f275948cf9e19a92a6b9eabe65efbd0b96 /tracker-pt
parent8fb85f858e85e5d0b2a217d9d31c68206266f987 (diff)
tracker/pt: declare floating-point type size in one place
We want double precision for POSIT. It's best for the type to be set in ope place without the need to go over everything while switching it back and forth during tests. Machine epsilon for float is very small as per <https://en.wikipedia.org/wiki/Machine_epsilon>. Also see the absurdly high epsilon of 1e-4 of POSIT that we've had. With floats, making the epsilon lower resulted in change deltas flushing to zero. This typically led to the translation Z value being very unstable in PT. After the epsilon and data type size changes the Z value is stable.
Diffstat (limited to 'tracker-pt')
-rw-r--r--tracker-pt/ftnoir_tracker_pt.cpp47
-rw-r--r--tracker-pt/ftnoir_tracker_pt.h6
-rw-r--r--tracker-pt/ftnoir_tracker_pt_settings.h28
-rw-r--r--tracker-pt/point_extractor.cpp10
-rw-r--r--tracker-pt/point_extractor.h6
-rw-r--r--tracker-pt/point_tracker.cpp152
-rw-r--r--tracker-pt/point_tracker.h92
7 files changed, 183 insertions, 158 deletions
diff --git a/tracker-pt/ftnoir_tracker_pt.cpp b/tracker-pt/ftnoir_tracker_pt.cpp
index d680698f..de137bea 100644
--- a/tracker-pt/ftnoir_tracker_pt.cpp
+++ b/tracker-pt/ftnoir_tracker_pt.cpp
@@ -56,7 +56,7 @@ void Tracker_PT::reset_command(Command command)
commands &= ~command;
}
-bool Tracker_PT::get_focal_length(float& ret)
+bool Tracker_PT::get_focal_length(f& ret)
{
QMutexLocker l(&camera_mtx);
CamInfo info;
@@ -104,7 +104,7 @@ void Tracker_PT::run()
{
const auto& points = point_extractor.extract_points(frame_);
- float fx;
+ f fx;
if (!get_focal_length(fx))
continue;
@@ -118,7 +118,7 @@ void Tracker_PT::run()
Affine X_CM = pose();
- std::function<void(const cv::Vec2f&, const cv::Scalar)> fun = [&](const cv::Vec2f& p, const cv::Scalar color)
+ std::function<void(const vec2&, const cv::Scalar)> fun = [&](const vec2& p, const cv::Scalar color)
{
using std::round;
cv::Point p2(round(p[0] * frame_.cols + frame_.cols/2),
@@ -141,10 +141,10 @@ void Tracker_PT::run()
}
{
- Affine X_MH(cv::Matx33f::eye(), cv::Vec3f(s.t_MH_x, s.t_MH_y, s.t_MH_z)); // just copy pasted these lines from below
+ Affine X_MH(mat33::eye(), vec3(s.t_MH_x, s.t_MH_y, s.t_MH_z)); // just copy pasted these lines from below
Affine X_GH = X_CM * X_MH;
- cv::Vec3f p = X_GH.t; // head (center?) position in global space
- cv::Vec2f p_(p[0] / p[2] * fx, p[1] / p[2] * fx); // projected to screen
+ vec3 p = X_GH.t; // head (center?) position in global space
+ vec2 p_(p[0] / p[2] * fx, p[1] / p[2] * fx); // projected to screen
fun(p_, cv::Scalar(0, 0, 255));
}
@@ -201,33 +201,34 @@ void Tracker_PT::data(double *data)
{
Affine X_CM = pose();
- Affine X_MH(cv::Matx33f::eye(), cv::Vec3f(s.t_MH_x, s.t_MH_y, s.t_MH_z));
+ Affine X_MH(mat33::eye(), vec3(s.t_MH_x, s.t_MH_y, s.t_MH_z));
Affine X_GH = X_CM * X_MH;
- cv::Matx33f R = X_GH.R;
- cv::Vec3f t = X_GH.t;
-
// translate rotation matrix from opengl (G) to roll-pitch-yaw (E) frame
// -z -> x, y -> z, x -> -y
- cv::Matx33f R_EG(0, 0,-1,
- -1, 0, 0,
- 0, 1, 0);
- R = R_EG * R * R_EG.t();
+ mat33 R_EG(0, 0,-1,
+ -1, 0, 0,
+ 0, 1, 0);
+ mat33 R = R_EG * X_GH.R * R_EG.t();
using std::atan2;
using std::sqrt;
// extract rotation angles
- float alpha, beta, gamma;
- beta = atan2( -R(2,0), sqrt(R(2,1)*R(2,1) + R(2,2)*R(2,2)) );
- alpha = atan2( R(1,0), R(0,0));
- gamma = atan2( R(2,1), R(2,2));
-
- // extract rotation angles
- data[Yaw] = rad2deg * alpha;
- data[Pitch] = -rad2deg * beta;
- data[Roll] = rad2deg * gamma;
+ {
+ f alpha, beta, gamma;
+ beta = atan2( -R(2,0), sqrt(R(2,1)*R(2,1) + R(2,2)*R(2,2)) );
+ alpha = atan2( R(1,0), R(0,0));
+ gamma = atan2( R(2,1), R(2,2));
+
+ data[Yaw] = rad2deg * alpha;
+ data[Pitch] = -rad2deg * beta;
+ data[Roll] = rad2deg * gamma;
+ }
// get translation(s)
+
+ const vec3& t = X_GH.t;
+
// convert to cm
data[TX] = t[0] / 10;
data[TY] = t[1] / 10;
diff --git a/tracker-pt/ftnoir_tracker_pt.h b/tracker-pt/ftnoir_tracker_pt.h
index d3b96f1d..c9497df5 100644
--- a/tracker-pt/ftnoir_tracker_pt.h
+++ b/tracker-pt/ftnoir_tracker_pt.h
@@ -29,7 +29,7 @@ class TrackerDialog_PT;
//-----------------------------------------------------------------------------
// Constantly processes the tracking chain in a separate thread
-class Tracker_PT : public QThread, public ITracker
+class Tracker_PT : public QThread, public ITracker, private pt_types
{
static constexpr double pi = 3.14159265359;
@@ -58,7 +58,7 @@ private:
void set_command(Command command);
void reset_command(Command command);
- bool get_focal_length(float &ret);
+ bool get_focal_length(f& ret);
QMutex camera_mtx;
CVCamera camera;
@@ -75,7 +75,7 @@ private:
volatile bool ever_success;
volatile unsigned char commands;
- static constexpr float rad2deg = float(180/3.14159265);
+ static constexpr f rad2deg = f(180/3.14159265);
//static constexpr float deg2rad = float(3.14159265/180);
};
diff --git a/tracker-pt/ftnoir_tracker_pt_settings.h b/tracker-pt/ftnoir_tracker_pt_settings.h
index e4bfa371..830bf92e 100644
--- a/tracker-pt/ftnoir_tracker_pt_settings.h
+++ b/tracker-pt/ftnoir_tracker_pt_settings.h
@@ -6,8 +6,26 @@
* copyright notice and this permission notice appear in all copies.
*/
-#ifndef FTNOIR_TRACKER_PT_SETTINGS_H
-#define FTNOIR_TRACKER_PT_SETTINGS_H
+#pragma once
+
+#include <limits>
+#include <opencv2/core.hpp>
+
+struct pt_types
+{
+ using f = double;
+
+ static constexpr f eps = std::numeric_limits<f>::epsilon();
+ static constexpr f pi = f(3.14159265358979323846);
+
+ template<int n> using vec = cv::Vec<f, n>;
+ using vec2 = vec<2>;
+ using vec3 = vec<3>;
+
+ template<int y, int x> using mat = cv::Matx<f, y, x>;
+ using mat33 = mat<3, 3>;
+ using mat22 = mat<2, 2>;
+};
#include "opentrack-compat/options.hpp"
using namespace options;
@@ -28,9 +46,9 @@ struct settings_pt : opts
value<int> clip_ty, clip_tz, clip_by, clip_bz;
value<int> active_model_panel, cap_x, cap_y, cap_z;
-
+
value<int> fov;
-
+
value<bool> dynamic_pose;
value<int> init_phase_timeout;
value<bool> auto_threshold;
@@ -67,5 +85,3 @@ struct settings_pt : opts
auto_threshold(b, "automatic-threshold", false)
{}
};
-
-#endif //FTNOIR_TRACKER_PT_SETTINGS_H
diff --git a/tracker-pt/point_extractor.cpp b/tracker-pt/point_extractor.cpp
index fb547ef6..f52ab424 100644
--- a/tracker-pt/point_extractor.cpp
+++ b/tracker-pt/point_extractor.cpp
@@ -21,7 +21,9 @@ PointExtractor::PointExtractor()
points.reserve(max_blobs);
}
-const std::vector<cv::Vec2f>& PointExtractor::extract_points(cv::Mat& frame)
+using vec2 = pt_types::vec2;
+
+const std::vector<vec2>& PointExtractor::extract_points(cv::Mat& frame)
{
const int W = frame.cols;
const int H = frame.rows;
@@ -53,8 +55,8 @@ const std::vector<cv::Vec2f>& PointExtractor::extract_points(cv::Mat& frame)
std::vector<int> { 0 },
cv::Mat(),
hist,
- std::vector<int> { 256/hist_c },
- std::vector<float> { 0, 256/hist_c },
+ std::vector<int> { 256 },
+ std::vector<float> { 0, 256 },
false);
const int sz = hist.cols * hist.rows;
int val = 0;
@@ -145,7 +147,7 @@ const std::vector<cv::Vec2f>& PointExtractor::extract_points(cv::Mat& frame)
for (auto& b : blobs)
{
- cv::Vec2f p((b.pos[0] - W/2)/W, -(b.pos[1] - H/2)/W);
+ vec2 p((b.pos[0] - W/2)/W, -(b.pos[1] - H/2)/W);
points.push_back(p);
}
return points;
diff --git a/tracker-pt/point_extractor.h b/tracker-pt/point_extractor.h
index 94948d34..67b2b8ea 100644
--- a/tracker-pt/point_extractor.h
+++ b/tracker-pt/point_extractor.h
@@ -16,13 +16,13 @@
#include <vector>
-class PointExtractor
+class PointExtractor final : private pt_types
{
public:
// extracts points from frame and draws some processing info into frame, if draw_output is set
// dt: time since last call in seconds
// WARNING: returned reference is valid as long as object
- const std::vector<cv::Vec2f> &extract_points(cv::Mat &frame);
+ const std::vector<vec2>& extract_points(cv::Mat &frame);
int get_n_points() { QMutexLocker l(&mtx); return points.size(); }
PointExtractor();
@@ -31,7 +31,7 @@ private:
static constexpr double pi = 3.14159265359;
static constexpr int hist_c = 1;
- std::vector<cv::Vec2f> points;
+ std::vector<vec2> points;
QMutex mtx;
cv::Mat frame_gray;
cv::Mat frame_bin;
diff --git a/tracker-pt/point_tracker.cpp b/tracker-pt/point_tracker.cpp
index 51f10470..4c1e177f 100644
--- a/tracker-pt/point_tracker.cpp
+++ b/tracker-pt/point_tracker.cpp
@@ -13,32 +13,69 @@
#include <QDebug>
-static void get_row(const cv::Matx33f& m, int i, cv::Vec3f& v)
+using mat33 = pt_types::mat33;
+using vec3 = pt_types::vec3;
+using f = pt_types::f;
+
+static void get_row(const mat33& m, int i, vec3& v)
{
v[0] = m(i,0);
v[1] = m(i,1);
v[2] = m(i,2);
}
-static void set_row(cv::Matx33f& m, int i, const cv::Vec3f& v)
+static void set_row(mat33& m, int i, const vec3& v)
{
m(i,0) = v[0];
m(i,1) = v[1];
m(i,2) = v[2];
}
-static bool d_vals_sort(const std::pair<float,int> a, const std::pair<float,int> b)
+static bool d_vals_sort(const std::pair<f,int> a, const std::pair<f,int> b)
{
return a.first < b.first;
}
-void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[], cv::Vec2f d) const
+PointModel::PointModel(settings_pt& s)
+{
+ set_model(s);
+ // calculate u
+ u = M01.cross(M02);
+ u /= norm(u);
+
+ // calculate projection matrix on M01,M02 plane
+ f s11 = M01.dot(M01);
+ f s12 = M01.dot(M02);
+ f s22 = M02.dot(M02);
+ P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11);
+}
+
+void PointModel::set_model(settings_pt& s)
+{
+ switch (s.active_model_panel)
+ {
+ case Clip:
+ M01 = vec3(0, static_cast<f>(s.clip_ty), -static_cast<f>(s.clip_tz));
+ M02 = vec3(0, -static_cast<f>(s.clip_by), -static_cast<f>(s.clip_bz));
+ break;
+ case Cap:
+ M01 = vec3(-static_cast<f>(s.cap_x), -static_cast<f>(s.cap_y), -static_cast<f>(s.cap_z));
+ M02 = vec3(static_cast<f>(s.cap_x), -static_cast<f>(s.cap_y), -static_cast<f>(s.cap_z));
+ break;
+ case Custom:
+ M01 = vec3(s.m01_x, s.m01_y, s.m01_z);
+ M02 = vec3(s.m02_x, s.m02_y, s.m02_z);
+ break;
+ }
+}
+
+void PointModel::get_d_order(const std::vector<vec2>& points, int* d_order, vec2 d) const
{
// fit line to orthographically projected points
- std::vector<std::pair<float,int>> d_vals;
+ std::vector<std::pair<f,int>> d_vals;
// get sort indices with respect to d scalar product
for (unsigned i = 0; i < PointModel::N_POINTS; ++i)
- d_vals.push_back(std::pair<float, int>(d.dot(points[i]), i));
+ d_vals.push_back(std::pair<f, int>(d.dot(points[i]), i));
std::sort(d_vals.begin(),
d_vals.end(),
@@ -54,12 +91,12 @@ PointTracker::PointTracker() : init_phase(true)
{
}
-PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel& model, float f)
+PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<vec2>& points, const PointModel& model, f focal_length)
{
PointTracker::PointOrder p;
- p.points[0] = project(cv::Vec3f(0,0,0), f);
- p.points[1] = project(model.M01, f);
- p.points[2] = project(model.M02, f);
+ p.points[0] = project(vec3(0,0,0), focal_length);
+ p.points[1] = project(model.M01, focal_length);
+ p.points[2] = project(model.M02, focal_length);
// set correspondences by minimum distance to projected model point
bool point_taken[PointModel::N_POINTS];
@@ -68,13 +105,13 @@ PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::
for (unsigned i=0; i<PointModel::N_POINTS; ++i)
{
- float min_sdist = 0;
+ f min_sdist = 0;
unsigned min_idx = 0;
// find closest point to projected model point i
for (unsigned j=0; j<PointModel::N_POINTS; ++j)
{
- cv::Vec2f d = p.points[i]-points[j];
- float sdist = d.dot(d);
+ vec2 d = p.points[i]-points[j];
+ f sdist = d.dot(d);
if (sdist < min_sdist || j==0)
{
min_idx = j;
@@ -93,7 +130,7 @@ PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::
return p;
}
-void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout)
+void PointTracker::track(const std::vector<vec2>& points, const PointModel& model, f focal_length, bool dynamic_pose, int init_phase_timeout)
{
PointOrder order;
@@ -106,26 +143,26 @@ void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel&
if (!dynamic_pose || init_phase)
order = find_correspondences(points, model);
else
- order = find_correspondences_previous(points, model, f);
+ order = find_correspondences_previous(points, model, focal_length);
- POSIT(model, order, f);
+ POSIT(model, order, focal_length);
init_phase = false;
t.start();
}
-PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, const PointModel& model)
+PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<vec2>& points, const PointModel& model)
{
// We do a simple freetrack-like sorting in the init phase...
// sort points
int point_d_order[PointModel::N_POINTS];
int model_d_order[PointModel::N_POINTS];
- cv::Vec2f d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
+ vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
model.get_d_order(points, point_d_order, d);
// calculate d and d_order for simple freetrack-like point correspondence
- model.get_d_order(std::vector<cv::Vec2f> {
- cv::Vec2f{0,0},
- cv::Vec2f(model.M01[0], model.M01[1]),
- cv::Vec2f(model.M02[0], model.M02[1])
+ model.get_d_order(std::vector<vec2> {
+ vec2{0,0},
+ vec2(model.M01[0], model.M01[1]),
+ vec2(model.M02[0], model.M02[1])
},
model_d_order,
d);
@@ -137,7 +174,7 @@ PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv
return p;
}
-int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length)
+int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, f focal_length)
{
// POSIT algorithm for coplanar points as presented in
// [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
@@ -145,45 +182,45 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float
// The expected rotation used for resolving the ambiguity in POSIT:
// In every iteration step the rotation closer to R_expected is taken
- cv::Matx33f R_expected = cv::Matx33f::eye();
+ mat33 R_expected = mat33::eye();
// initial pose = last (predicted) pose
- cv::Vec3f k;
+ vec3 k;
get_row(R_expected, 2, k);
- float Z0 = 1000.f;
+ f Z0 = f(1000);
- float old_epsilon_1 = 0;
- float old_epsilon_2 = 0;
- float epsilon_1 = 1;
- float epsilon_2 = 1;
+ f old_epsilon_1 = 0;
+ f old_epsilon_2 = 0;
+ f epsilon_1 = 1;
+ f epsilon_2 = 1;
- cv::Vec3f I0, J0;
- cv::Vec2f I0_coeff, J0_coeff;
+ vec3 I0, J0;
+ vec2 I0_coeff, J0_coeff;
- cv::Vec3f I_1, J_1, I_2, J_2;
- cv::Matx33f R_1, R_2;
- cv::Matx33f* R_current;
+ vec3 I_1, J_1, I_2, J_2;
+ mat33 R_1, R_2;
+ mat33* R_current = &R_1;
- constexpr int MAX_ITER = 100;
- const float EPS_THRESHOLD = 1e-4f;
+ static constexpr int max_iter = 100;
- const cv::Vec2f* order = order_.points;
+ const vec2* order = order_.points;
using std::sqrt;
using std::atan;
using std::cos;
using std::sin;
+ using std::fabs;
int i=1;
- for (; i<MAX_ITER; ++i)
+ for (; i<max_iter; ++i)
{
epsilon_1 = k.dot(model.M01)/Z0;
epsilon_2 = k.dot(model.M02)/Z0;
// vector of scalar products <I0, M0i> and <J0, M0i>
- cv::Vec2f I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0],
+ vec2 I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0],
order[2][0]*(1 + epsilon_2) - order[0][0]);
- cv::Vec2f J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1],
+ vec2 J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1],
order[2][1]*(1 + epsilon_2) - order[0][1]);
// construct projection of I, J onto M0i plane: I0 and J0
@@ -193,22 +230,22 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float
J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
// calculate u component of I, J
- float II0 = I0.dot(I0);
- float IJ0 = I0.dot(J0);
- float JJ0 = J0.dot(J0);
- float rho, theta;
+ f II0 = I0.dot(I0);
+ f IJ0 = I0.dot(J0);
+ f JJ0 = J0.dot(J0);
+ f rho, theta;
// CAVEAT don't change to comparison with an epsilon -sh 20160423
if (JJ0 == II0) {
- rho = std::sqrt(std::abs(2*IJ0));
- theta = -PI/4;
+ rho = sqrt(fabs(2*IJ0));
+ theta = -pi/4;
if (IJ0<0) theta *= -1;
}
else {
rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
theta = atan( -2*IJ0 / (JJ0-II0) );
// avoid branch misprediction
- theta += (JJ0 - II0 < 0) * PI;
- theta /= 2;
+ theta += (JJ0 - II0 < 0) * pi;
+ theta *= f(.5);
}
// construct the two solutions
@@ -218,7 +255,7 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float
J_1 = J0 + rho*sin(theta)*model.u;
J_2 = J0 - rho*sin(theta)*model.u;
- float norm_const = 1/cv::norm(I_1); // all have the same norm
+ f norm_const = 1/cv::norm(I_1); // all have the same norm
// create rotation matrices
I_1 *= norm_const; J_1 *= norm_const;
@@ -237,8 +274,8 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float
// pick the rotation solution closer to the expected one
// in simple metric d(A,B) = || I - A * B^T ||
- float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t());
- float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t());
+ f R_1_deviation = cv::norm(mat33::eye() - R_expected * R_1.t());
+ f R_2_deviation = cv::norm(mat33::eye() - R_expected * R_2.t());
if (R_1_deviation < R_2_deviation)
R_current = &R_1;
@@ -248,8 +285,11 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float
get_row(*R_current, 2, k);
// check for convergence condition
- if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD)
+ const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2);
+
+ if (!(delta > eps))
break;
+
old_epsilon_1 = epsilon_1;
old_epsilon_2 = epsilon_2;
}
@@ -266,8 +306,8 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float
return i;
}
-cv::Vec2f PointTracker::project(const cv::Vec3f& v_M, float f)
+pt_types::vec2 PointTracker::project(const vec3& v_M, f focal_length)
{
- cv::Vec3f v_C = X_CM * v_M;
- return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]);
+ vec3 v_C = X_CM * v_M;
+ return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]);
}
diff --git a/tracker-pt/point_tracker.h b/tracker-pt/point_tracker.h
index e3f6cdb9..559f7963 100644
--- a/tracker-pt/point_tracker.h
+++ b/tracker-pt/point_tracker.h
@@ -8,23 +8,22 @@
#ifndef POINTTRACKER_H
#define POINTTRACKER_H
+#include "opentrack-compat/timer.hpp"
+#include "ftnoir_tracker_pt_settings.h"
#include <opencv2/core/core.hpp>
#include <memory>
#include <vector>
-#include "opentrack-compat/timer.hpp"
-#include "ftnoir_tracker_pt_settings.h"
-
#include <QObject>
#include <QMutex>
-class Affine
+class Affine final : private pt_types
{
public:
- Affine() : R(cv::Matx33f::eye()), t(0,0,0) {}
- Affine(const cv::Matx33f& R, const cv::Vec3f& t) : R(R),t(t) {}
+ Affine() : R(mat33::eye()), t(0,0,0) {}
+ Affine(const mat33& R, const vec3& t) : R(R),t(t) {}
- cv::Matx33f R;
- cv::Vec3f t;
+ mat33 R;
+ vec3 t;
};
inline Affine operator*(const Affine& X, const Affine& Y)
@@ -32,114 +31,81 @@ inline Affine operator*(const Affine& X, const Affine& Y)
return Affine(X.R*Y.R, X.R*Y.t + X.t);
}
-inline Affine operator*(const cv::Matx33f& X, const Affine& Y)
+inline Affine operator*(const pt_types::mat33& X, const Affine& Y)
{
return Affine(X*Y.R, X*Y.t);
}
-inline Affine operator*(const Affine& X, const cv::Matx33f& Y)
+inline Affine operator*(const Affine& X, const pt_types::mat33& Y)
{
return Affine(X.R*Y, X.t);
}
-inline cv::Vec3f operator*(const Affine& X, const cv::Vec3f& v)
+inline pt_types::vec3 operator*(const Affine& X, const pt_types::vec3& v)
{
return X.R*v + X.t;
}
-
// ----------------------------------------------------------------------------
// Describes a 3-point model
// nomenclature as in
// [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
-class PointModel
+class PointModel final : private pt_types
{
friend class PointTracker;
public:
static constexpr unsigned N_POINTS = 3;
- cv::Vec3f M01; // M01 in model frame
- cv::Vec3f M02; // M02 in model frame
+ vec3 M01; // M01 in model frame
+ vec3 M02; // M02 in model frame
- cv::Vec3f u; // unit vector perpendicular to M01,M02-plane
+ vec3 u; // unit vector perpendicular to M01,M02-plane
- cv::Matx22f P;
+ mat22 P;
- enum Model { Clip = 0, Cap = 1, Custom = 2 };
+ enum Model { Clip, Cap, Custom };
- PointModel(settings_pt& s)
- {
- set_model(s);
- // calculate u
- u = M01.cross(M02);
- u /= norm(u);
-
- // calculate projection matrix on M01,M02 plane
- float s11 = M01.dot(M01);
- float s12 = M01.dot(M02);
- float s22 = M02.dot(M02);
- P = 1/(s11*s22-s12*s12) * cv::Matx22f(s22, -s12, -s12, s11);
- }
-
- void set_model(settings_pt& s)
- {
- switch (s.active_model_panel)
- {
- case Clip:
- M01 = cv::Vec3f(0, static_cast<double>(s.clip_ty), -static_cast<double>(s.clip_tz));
- M02 = cv::Vec3f(0, -static_cast<double>(s.clip_by), -static_cast<double>(s.clip_bz));
- break;
- case Cap:
- M01 = cv::Vec3f(-static_cast<double>(s.cap_x), -static_cast<double>(s.cap_y), -static_cast<double>(s.cap_z));
- M02 = cv::Vec3f(static_cast<double>(s.cap_x), -static_cast<double>(s.cap_y), -static_cast<double>(s.cap_z));
- break;
- case Custom:
- M01 = cv::Vec3f(s.m01_x, s.m01_y, s.m01_z);
- M02 = cv::Vec3f(s.m02_x, s.m02_y, s.m02_z);
- break;
- }
- }
-
- void get_d_order(const std::vector<cv::Vec2f>& points, int* d_order, cv::Vec2f d) const;
+ PointModel(settings_pt& s);
+ void set_model(settings_pt& s);
+ void get_d_order(const std::vector<vec2>& points, int* d_order, vec2 d) const;
};
// ----------------------------------------------------------------------------
// Tracks a 3-point model
// implementing the POSIT algorithm for coplanar points as presented in
// [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
-class PointTracker
+class PointTracker final : private pt_types
{
public:
PointTracker();
// track the pose using the set of normalized point coordinates (x pos in range -0.5:0.5)
// f : (focal length)/(sensor width)
// dt : time since last call
- void track(const std::vector<cv::Vec2f>& projected_points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout);
+ void track(const std::vector<vec2>& projected_points, const PointModel& model, f focal_length, bool dynamic_pose, int init_phase_timeout);
Affine pose() { QMutexLocker l(&mtx); return X_CM; }
- cv::Vec2f project(const cv::Vec3f& v_M, float f);
-private:
- static constexpr float PI = 3.14159265358979323846f;
+ vec2 project(const vec3& v_M, PointTracker::f focal_length);
+private:
// the points in model order
struct PointOrder
{
- cv::Vec2f points[PointModel::N_POINTS];
+ vec2 points[PointModel::N_POINTS];
PointOrder()
{
for (unsigned i = 0; i < PointModel::N_POINTS; i++)
- points[i] = cv::Vec2f(0, 0);
+ points[i] = vec2(0, 0);
}
};
- PointOrder find_correspondences(const std::vector<cv::Vec2f>& projected_points, const PointModel &model);
- PointOrder find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel &model, float f);
- int POSIT(const PointModel& point_model, const PointOrder& order, float focal_length); // The POSIT algorithm, returns the number of iterations
+ PointOrder find_correspondences(const std::vector<vec2>& projected_points, const PointModel &model);
+ PointOrder find_correspondences_previous(const std::vector<vec2>& points, const PointModel &model, f focal_length);
+ int POSIT(const PointModel& point_model, const PointOrder& order, f focal_length); // The POSIT algorithm, returns the number of iterations
Affine X_CM; // trafo from model to camera
Timer t;
- bool init_phase;
QMutex mtx;
+ bool init_phase;
};
#endif //POINTTRACKER_H