diff options
-rw-r--r-- | filter-kalman/kalman.cpp | 17 | ||||
-rw-r--r-- | filter-kalman/kalman.h | 5 |
2 files changed, 9 insertions, 13 deletions
diff --git a/filter-kalman/kalman.cpp b/filter-kalman/kalman.cpp index 1d71e3f6..6ed5ca91 100644 --- a/filter-kalman/kalman.cpp +++ b/filter-kalman/kalman.cpp @@ -199,8 +199,6 @@ void FTNoIR_Filter::reset() prev_slider_pos[0] = static_cast<slider_value>(s.noise_pos_slider_value); prev_slider_pos[1] = static_cast<slider_value>(s.noise_rot_slider_value); - //minimal_state_var = PoseVector::Constant(std::numeric_limits<double>::max()); - dz_filter.reset(); } @@ -238,15 +236,14 @@ void FTNoIR_Filter::filter(const double* input_, double *output_) { // Compute deadzone size base on estimated state variance. - // Given a constant input plus noise, KF should converge to the true (constant) input. - // This works indeed. That is the output pose becomes very still afte some time. - // At this point the estimated cov should be minimal. We can use this to - // calculate the size of the deadzone, so that in the stationary state the - // deadzone size is zero. Thus the tracking error due to the dz-filter - // becomes zero. + // Given a constant input plus measurement noise, KF should converge to the true input. + // This works well. That is the output pose becomes very still afte some time. + // The QScaling adaptive filter makes the state cov vary depending on the estimated noise + // and the measured noise of the innovation sequence. After a sudden movement it peaks + // and then decays asymptotically to some constant value taken in stationary state. + // We can use this to calculate the size of the deadzone, so that in the stationary state the + // deadzone size is small. Thus the tracking error due to the dz-filter becomes also small. PoseVector variance = kf.state_cov.diagonal().head(6); - //minimal_state_var = minimal_state_var.cwiseMin(variance); - //dz_filter.dz_size = (variance - minimal_state_var).cwiseSqrt() * s.deadzone_scale; dz_filter.dz_size = variance.cwiseSqrt() * s.deadzone_scale; } output = dz_filter.filter(output); diff --git a/filter-kalman/kalman.h b/filter-kalman/kalman.h index 3c9466a5..aaed3bc1 100644 --- a/filter-kalman/kalman.h +++ b/filter-kalman/kalman.h @@ -91,8 +91,8 @@ struct settings : opts { value<slider_value> noise_pos_slider_value; static constexpr double adaptivity_window_length = 0.5; // seconds - static constexpr double deadzone_scale = 2.; - static constexpr double deadzone_exponent = 4.0; + static constexpr double deadzone_scale = 2; + static constexpr double deadzone_exponent = 2.0; static constexpr double process_sigma_pos = 0.5; static constexpr double process_simga_rot = 0.5; @@ -147,7 +147,6 @@ public: settings s; KalmanFilter kf; KalmanProcessNoiseScaler kf_adaptive_process_noise_cov; - //PoseVector minimal_state_var; DeadzoneFilter dz_filter; slider_value prev_slider_pos[2]; |