diff options
Diffstat (limited to 'compat')
-rw-r--r-- | compat/euler.cpp | 39 | ||||
-rw-r--r-- | compat/euler.hpp | 3 | ||||
-rw-r--r-- | compat/simple-mat.hpp | 315 |
3 files changed, 124 insertions, 233 deletions
diff --git a/compat/euler.cpp b/compat/euler.cpp index e48d977b..ab119d3e 100644 --- a/compat/euler.cpp +++ b/compat/euler.cpp @@ -93,43 +93,4 @@ void OTR_COMPAT_EXPORT tait_bryan_to_matrices(const euler_t& input, } } -// from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ -Quat matrix_to_quat(const rmat& M) -{ - Quat q(1, 0, 0, 0); - - using std::sqrt; - - double trace = M(0, 0) + M(1, 1) + M(2, 2); // I removed + 1.0; see discussion with Ethan - if( trace > 0 ) {// I changed M_EPSILON to 0 - double s = .5 / std::sqrt(trace + 1); - q.w() = .25 / s; - q.x() = ( M(2, 1) - M(1, 2) ) * s; - q.y() = ( M(0, 2) - M(2, 0) ) * s; - q.z() = ( M(1, 0) - M(0, 1) ) * s; - } else { - if ( M(0, 0) > M(1, 1) && M(0, 0) > M(2, 2) ) { - double s = 2.0 * sqrt( 1.0 + M(0, 0) - M(1, 1) - M(2, 2)); - q.w() = (M(2, 1) - M(1, 2) ) / s; - q.x() = .25 * s; - q.y() = (M(0, 1) + M(1, 0) ) / s; - q.z() = (M(0, 2) + M(2, 0) ) / s; - } else if (M(1, 1) > M(2, 2)) { - double s = 2.0 * sqrt( 1.0 + M(1, 1) - M(0, 0) - M(2, 2)); - q.w() = (M(0, 2) - M(2, 0) ) / s; - q.x() = (M(0, 1) + M(1, 0) ) / s; - q.y() = .25 * s; - q.z() = (M(1, 2) + M(2, 1) ) / s; - } else { - double s = 2.0 * sqrt( 1.0 + M(2, 2) - M(0, 0) - M(1, 1) ); - q.w() = (M(1, 0) - M(0, 1) ) / s; - q.x() = (M(0, 2) + M(2, 0) ) / s; - q.y() = (M(1, 2) + M(2, 1) ) / s; - q.z() = .25 * s; - } - } - - return q; -} - } // end ns euler diff --git a/compat/euler.hpp b/compat/euler.hpp index 4eb6e00c..c50cf052 100644 --- a/compat/euler.hpp +++ b/compat/euler.hpp @@ -22,7 +22,4 @@ void OTR_COMPAT_EXPORT tait_bryan_to_matrices(const euler_t& input, rmat& r_pitch, rmat& r_yaw); -Quat OTR_COMPAT_EXPORT matrix_to_quat(const rmat& M); -//XXX TODO rmat OTR_COMPAT_EXPORT quat_to_matrix(const Quat<double>& Q); - } // end ns euler diff --git a/compat/simple-mat.hpp b/compat/simple-mat.hpp index 1146984a..fbd0a75e 100644 --- a/compat/simple-mat.hpp +++ b/compat/simple-mat.hpp @@ -8,42 +8,48 @@ #pragma once -#include <cmath> #include "export.hpp" -#include <compat/util.hpp> #include <initializer_list> #include <type_traits> #include <utility> -namespace mat_detail { - -// `zz' param to fool into SFINAE member overload - -template<int i, int j, int k, int zz> -constexpr bool equals = ((void)zz, i == k && j != k); - -template<int i, int j, int min> -constexpr bool maybe_swizzle = - (i == 1 || j == 1) && (i >= min || j >= min); - -template<int i1, int j1, int i2, int j2> -constexpr bool is_vector_pair = - (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1); - -template<int i, int j> -constexpr unsigned vector_len = i > j ? i : j; - -template<int a, int b, int c, int d> -constexpr bool dim3 = - (a == 3 || b == 3) && (c == 3 || d == 3) && - (a == 1 || b == 1) && (c == 1 || d == 1); - -template<int h, int w, typename... ts> -constexpr bool arglist_correct = h * w == sizeof...(ts); +namespace { + // last param to fool SFINAE into overloading + template<int i, int j, int> + struct equals + { + enum { value = i == j }; + }; + template<int i, int j, int min> + struct maybe_add_swizzle + { + enum { value = (i == 1 || j == 1) && (i >= min || j >= min) }; + }; + template<int i1, int j1, int i2, int j2> + struct is_vector_pair + { + enum { value = (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1) }; + }; + template<int i, int j> + struct vector_len + { + enum { value = i > j ? i : j }; + }; + template<int a, int b, int c, int d> + struct is_dim3 + { + enum { value = (a == 1 && c == 1 && b == 3 && d == 3) || (a == 3 && c == 3 && b == 1 && d == 1) }; + enum { P = a == 1 ? 1 : 3 }; + enum { Q = a == 1 ? 3 : 1 }; + }; -template<bool x, typename t> -using sfinae = typename std::enable_if<x, t>::type; + template<typename num, int h, int w, typename...ts> + struct is_arglist_correct + { + enum { value = h * w == sizeof...(ts) }; + }; +} template<typename num, int h_, int w_> class Mat @@ -51,74 +57,78 @@ class Mat static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions"); num data[h_][w_]; -#define OTR_ASSERT_SWIZZLE static_assert(P == h_ && Q == w_, "") +public: + template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type + inline operator()(int i) const { return data[i][0]; } - Mat(std::initializer_list<num>&& init) - { - auto iter = init.begin(); - for (int j = 0; j < h_; j++) - for (int i = 0; i < w_; i++) - data[j][i] = *iter++; - } + template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type + inline operator()(int i) const { return data[0][i]; } -public: - // start sfinae-R-us block + template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type + inline operator()(int i) { return data[i][0]; } + + template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type + inline operator()(int i) { return data[0][i]; } + + template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type + inline operator()(unsigned i) const { return data[i][0]; } + + template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type + inline operator()(unsigned i) const { return data[0][i]; } + + template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type + inline operator()(unsigned i) { return data[i][0]; } - // rebinding w_ and h_ since SFINAE requires dependent variables + template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type + inline operator()(unsigned i) { return data[0][i]; } - template<int P = h_, int Q = w_> sfinae<equals<Q, P, 1, 0>, num> - OTR_FLATTEN operator()(int i) const { OTR_ASSERT_SWIZZLE; return data[i][0]; } - template<int P = h_, int Q = w_> sfinae<equals<Q, 0, 1, 0>, num&> - OTR_FLATTEN operator()(int i) { OTR_ASSERT_SWIZZLE; return data[i][0]; } +#define OPENTRACK_ASSERT_SWIZZLE static_assert(P == h_ && Q == w_, "") - template<int P = h_, int Q = w_> sfinae<equals<P, Q, 1, 1>, num> - OTR_FLATTEN operator()(int i) const { OTR_ASSERT_SWIZZLE; return data[0][i]; } - template<int P = h_, int Q = w_> sfinae<equals<P, Q, 1, 1>, num&> - OTR_FLATTEN operator()(int i) { OTR_ASSERT_SWIZZLE; return data[0][i]; } + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num>::type + x() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(0); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 1>, num> - OTR_FLATTEN x() const { OTR_ASSERT_SWIZZLE; return operator()(0); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 1>, num&> - OTR_FLATTEN x() { OTR_ASSERT_SWIZZLE; return operator()(0); } + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num>::type + y() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(1); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 2>, num> - OTR_FLATTEN y() const { OTR_ASSERT_SWIZZLE; return operator()(1); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 2>, num&> - OTR_FLATTEN y() { OTR_ASSERT_SWIZZLE; return operator()(1); } + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num>::type + z() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(2); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 3>, num> - OTR_FLATTEN z() const { OTR_ASSERT_SWIZZLE; return operator()(2); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 3>, num&> - OTR_FLATTEN z() { OTR_ASSERT_SWIZZLE; return operator()(2); } + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num>::type + w() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(3); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 4>, num> - OTR_FLATTEN w() const { OTR_ASSERT_SWIZZLE; return operator()(3); } - template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 4>, num&> - OTR_FLATTEN w() { OTR_ASSERT_SWIZZLE; return operator()(3); } + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num&>::type + x() { OPENTRACK_ASSERT_SWIZZLE; return operator()(0); } - // end sfinae-R-us block + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num&>::type + y() { OPENTRACK_ASSERT_SWIZZLE; return operator()(1); } + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num&>::type + z() { OPENTRACK_ASSERT_SWIZZLE; return operator()(2); } + + template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num&>::type + w() { OPENTRACK_ASSERT_SWIZZLE; return operator()(3); } // parameters w_ and h_ are rebound so that SFINAE occurs // removing them causes a compile-time error -sh 20150811 template<int R, int S, int P = h_, int Q = w_> - sfinae<is_vector_pair<R, S, P, Q>, num> + typename std::enable_if<is_vector_pair<R, S, P, Q>::value, num>::type dot(const Mat<num, R, S>& p2) const { - OTR_ASSERT_SWIZZLE; + static_assert(P == h_ && Q == w_, ""); num ret = 0; - static constexpr unsigned len = vector_len<R, S>; - for (unsigned i = 0; i < len; i++) + constexpr int len = vector_len<R, S>::value; + for (int i = 0; i < len; i++) ret += operator()(i) * p2(i); return ret; } - template<int R, int S, int P = h_, int Q = w_> sfinae<dim3<P, Q, R, S>, Mat<num, 3, 1>> + template<int R, int S, int P = h_, int Q = w_> + typename std::enable_if<is_dim3<P, Q, R, S>::value, Mat<num, is_dim3<P, Q, R, S>::P, is_dim3<P, Q, R, S>::Q>>::type cross(const Mat<num, R, S>& p2) const { - OTR_ASSERT_SWIZZLE; - decltype(*this)& OTR_RESTRICT p1 = *this; + static_assert(P == h_ && Q == w_, ""); + decltype(*this)& p1 = *this; return Mat<num, R, S>(p1.y() * p2.z() - p2.y() * p1.z(), p2.x() * p1.z() - p1.x() * p2.z(), @@ -143,6 +153,24 @@ public: return ret; } + Mat<num, h_, w_> operator+(const num& other) const + { + Mat<num, h_, w_> ret; + for (int j = 0; j < h_; j++) + for (int i = 0; i < w_; i++) + ret(j, i) = data[j][i] + other; + return ret; + } + + Mat<num, h_, w_> operator-(const num& other) const + { + Mat<num, h_, w_> ret; + for (int j = 0; j < h_; j++) + for (int i = 0; i < w_; i++) + ret(j, i) = data[j][i] - other; + return ret; + } + template<int p> Mat<num, h_, p> operator*(const Mat<num, w_, p>& other) const { @@ -163,12 +191,11 @@ public: inline num operator()(unsigned j, unsigned i) const { return data[j][i]; } inline num& operator()(unsigned j, unsigned i) { return data[j][i]; } - template<typename... ts, int P = h_, int Q = w_, - typename = sfinae<arglist_correct<P, Q, ts...>, void>> + template<typename... ts, int h__ = h_, int w__ = w_, + typename = typename std::enable_if<is_arglist_correct<num, h__, w__, ts...>::value>::type> Mat(const ts... xs) { - OTR_ASSERT_SWIZZLE; - static_assert(arglist_correct<P, Q, ts...>, ""); + static_assert(h__ == h_ && w__ == w_, ""); std::initializer_list<num> init = { static_cast<num>(xs)... }; @@ -182,31 +209,38 @@ public: data[j][i] = num(0); } - Mat(const num* OTR_RESTRICT mem) + Mat(const num* mem) { for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = mem[i*h_+j]; } - OTR_ALWAYS_INLINE operator num*() { return reinterpret_cast<num*>(data); } - OTR_ALWAYS_INLINE operator const num*() const { return reinterpret_cast<const num*>(data); } + Mat(std::initializer_list<num>&& init) + { + auto iter = init.begin(); + for (int j = 0; j < h_; j++) + for (int i = 0; i < w_; i++) + data[j][i] = *iter++; + } + + operator num*() { return reinterpret_cast<num*>(data); } + operator const num*() const { return reinterpret_cast<const num*>(data); } // XXX add more operators as needed, third-party dependencies mostly // not needed merely for matrix algebra -sh 20141030 - template<int P = h_> - static typename std::enable_if<P == w_, Mat<num, P, P>>::type eye() + template<int h__ = h_> + static typename std::enable_if<h_ == w_, Mat<num, h__, h__>>::type eye() { - static_assert(P == h_, ""); + static_assert(h_ == h__, ""); - Mat<num, P, P> ret; - - for (int j = 0; j < P; j++) + Mat<num, h_, h_> ret; + for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret.data[j][i] = 0; - for (int i = 0; i < P; i++) + for (int i = 0; i < h_; i++) ret.data[i][i] = 1; return ret; @@ -224,119 +258,18 @@ public: } }; -template<typename num> -class Quat : Mat<num, 4, 1> -{ - using quat = Quat<num>; - - enum idx { qw, qx, qy, qz }; - - static quat _from_array(const num* data) - { - return quat(data[qw], data[qx], data[qy], data[qz]); - } - - inline num elt(idx k) const { return operator()(k); } - inline num& elt(idx k) { return Mat<num, 4, 1>::operator()(int(k)); } -public: - Quat(num w, num x, num y, num z) : Mat<num, 4, 1>(w, x, y, z) - { - } - - Quat() : quat(1, 0, 0, 0) {} - - static quat from_vector(const Mat<num, 4, 1>& data) - { - return _from_array(data); - } - - static quat from_vector(const Mat<num, 1, 4>& data) - { - return _from_array(data); - } - - quat normalized() const - { - const num x = elt(qx), y = elt(qy), z = elt(qz), w = elt(qw); - const num inv_n = 1./std::sqrt(x*x + y*y + z*z + w*w); - - return Quat<num>(elt(qw) * inv_n, - elt(qx) * inv_n, - elt(qy) * inv_n, - elt(qz) * inv_n); - } - - quat operator*(const quat& q2) - { - const quat& OTR_RESTRICT q1 = *this; - return quat(-q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z() + q1.w() * q2.w(), - q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y() + q1.w() * q2.x(), - -q1.x() * q2.z() + q1.y() * q2.w() + q1.z() * q2.x() + q1.w() * q2.y(), - q1.x() * q2.y() - q1.y() * q2.x() + q1.z() * q2.w() + q1.w() * q2.z()); - } - - inline num w() const { return elt(qw); } - inline num x() const { return elt(qx); } - inline num y() const { return elt(qy); } - inline num z() const { return elt(qz); } - - inline num& w() { return elt(qw); } - inline num& x() { return elt(qx); } - inline num& y() { return elt(qy); } - inline num& z() { return elt(qz); } -}; - -} // ns detail - template<typename num, int h, int w> -using Mat = mat_detail::Mat<num, h, w>; - -template<typename num, int h, int w> -inline Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat) { return mat * scalar; } - -template<typename num, int h, int w> -inline Mat<num, h, w> operator-(num scalar, const Mat<num, h, w>& mat) { return mat - scalar; } - -template<typename num, int h, int w> -inline Mat<num, h, w> operator+(num scalar, const Mat<num, h, w>& mat) { return mat + scalar; } - -template<typename num, int h_, int w_> -inline Mat<num, h_, w_> operator*(const Mat<num, h_, w_>& OTR_RESTRICT self, num other) -{ - Mat<num, h_, w_> ret; - for (int j = 0; j < h_; j++) - for (int i = 0; i < w_; i++) - ret(j, i) = self(j, i) * other; - return ret; -} - -template<typename num, int h_, int w_> -inline Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& OTR_RESTRICT self, num other) +Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat) { - Mat<num, h_, w_> ret; - for (int j = 0; j < h_; j++) - for (int i = 0; i < w_; i++) - ret(j, i) = self(j, i) - other; - return ret; + return mat * scalar; } template<typename num, int h_, int w_> -inline Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& OTR_RESTRICT self, num other) +Mat<num, h_, w_> operator*(const Mat<num, h_, w_>& self, num other) { Mat<num, h_, w_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) - ret(j, i) = self(j, i) + other; + ret(j, i) = self(j, i) * other; return ret; } - -template<typename num> -using Quat_ = mat_detail::Quat<num>; - -using Quat = Quat_<double>; - -template class mat_detail::Mat<float, 3, 3>; -template class mat_detail::Mat<float, 6, 1>; -template class mat_detail::Mat<float, 3, 1>; - -// eof |