diff options
Diffstat (limited to 'facetracknoir/gain-control.hpp')
-rw-r--r-- | facetracknoir/gain-control.hpp | 175 |
1 files changed, 175 insertions, 0 deletions
diff --git a/facetracknoir/gain-control.hpp b/facetracknoir/gain-control.hpp new file mode 100644 index 00000000..28887700 --- /dev/null +++ b/facetracknoir/gain-control.hpp @@ -0,0 +1,175 @@ +#pragma once + +#include <algorithm> +#undef NDEBUG +#include <cassert> +#include <iterator> +#include <tuple> +#include <deque> +#include <vector> + +#include "timer.hpp" + +#include <opencv2/core/core.hpp> +#include <opencv2/highgui/highgui.hpp> +#include <opencv2/imgproc/imgproc.hpp> + +#include <QDebug> + +namespace detail { + template<typename t1, typename t2, typename t, typename m = t> + class zip_iterator : public std::iterator<std::forward_iterator_tag, t> + { + private: + using self = zip_iterator<t1, t2, t, m>; + t1 x1, z1; + t2 x2, z2; + void maybe_end() { if (x1 == z1 || x2 == z2) *this = end(); } + public: + zip_iterator(const t1& it1, const t1& end1, const t2& it2, const t2& end2) + : x1(it1), z1(end1), x2(it2), z2(end2) { maybe_end(); } + constexpr zip_iterator() {} + + static constexpr self end() { return self(); } + + self operator++() { x1++; x2++; self tmp = *this; maybe_end(); return tmp; } + self operator++(int) { self tmp(*this); x1++; x2++; maybe_end(); return tmp; } + bool operator==(const self& rhs) const { return x1 == rhs.x1 && x2 == rhs.x2; } + bool operator!=(const self& rhs) const { return !this->operator ==(rhs); } + t operator*() { return m(*x1, *x2); } + }; +} + +class Gain { +private: + static constexpr bool use_box_filter = true; + static constexpr int box_size = 20 / 640.; + static constexpr double control_upper_bound = 1.0; // XXX FIXME implement for logitech crapola + static constexpr int GAIN_HISTORY_COUNT = 15, GAIN_HISTORY_EVERY_MS = 200; + + int control; + double step, eps; + + std::deque<double> means_history; + + Timer debug_timer, history_timer; + + typedef unsigned char px; + template<typename t1, typename t2, typename t, typename m = t> + using zip_iterator = detail::zip_iterator<t1, t2, t, m>; + + static double mean(const cv::Mat& frame) + { + // grayscale only + assert(frame.channels() == 1); + assert(frame.elemSize() == 1); + assert(!frame.empty()); + + return std::accumulate(frame.begin<px>(), frame.end<px>(), 0.) / (frame.rows * frame.cols); + } + + static double get_variance(const cv::Mat& frame, double mean) + { + struct variance { + private: + double mu; + public: + variance(double mu) : mu(mu) {} + double operator()(double seed, px p) + { + double tmp = p - mu; + return seed + tmp * tmp; + } + } logic(mean); + + return std::accumulate(frame.begin<unsigned char>(), frame.end<unsigned char>(), 0., logic) / (frame.rows * frame.cols); + } + + static double get_covariance(const cv::Mat& frame, double mean, double prev_mean) + { + struct covariance { + public: + using pair = std::tuple<px, px>; + private: + double mu_0, mu_1; + + inline double Cov(double seed, const pair& t) + { + px p0 = std::get<0>(t); + px p1 = std::get<1>(t); + return seed + (p0 - mu_0) * (p1 - mu_1); + } + public: + covariance(double mu_0, double mu_1) : mu_0(mu_0), mu_1(mu_1) {} + + double operator()(double seed, const pair& t) + { + return Cov(seed, t); + } + } logic(mean, prev_mean); + + const double N = frame.rows * frame.cols; + + using zipper = zip_iterator<cv::MatConstIterator_<px>, + cv::MatConstIterator_<px>, + std::tuple<px, px>>; + + zipper zip(frame.begin<px>(), + frame.end<px>(), + frame.begin<px>(), + frame.end<px>()); + std::vector<covariance::pair> values(zip, zipper::end()); + + return std::accumulate(values.begin(), values.end(), 0., logic) / N; + } + +#pragma GCC diagnostic ignored "-Wsign-compare" + +public: + Gain(int control = CV_CAP_PROP_GAIN, double step = 0.3, double eps = 0.02) : + control(control), step(step), eps(eps) + { + } + + void tick(cv::VideoCapture&, const cv::Mat& frame_) + { + cv::Mat frame; + + if (use_box_filter) + { + cv::Mat tmp(frame_); + static constexpr int min_box = 3; + static constexpr int box = 2 * box_size; + cv::blur(frame_, tmp, cv::Size(min_box + box * frame_.cols, min_box + box * frame_.rows)); + frame = tmp; + } + else + frame = frame_; + + const double mu = mean(frame); + const double var = get_variance(frame, mu); + + if (debug_timer.elapsed_ms() > 500) + { + debug_timer.start(); + qDebug() << "gain:" << "mean" << mu << "variance" << var; + } + + const int sz = means_history.size(); + + for (int i = 0; i < sz; i++) + { + const double cov = get_covariance(frame, mu, means_history[i]); + + qDebug() << "cov" << i << cov; + } + + if (GAIN_HISTORY_COUNT > means_history.size() && history_timer.elapsed_ms() > GAIN_HISTORY_EVERY_MS) + { + means_history.push_front(mu); + + if (GAIN_HISTORY_COUNT == means_history.size()) + means_history.pop_back(); + } + } +}; |