summaryrefslogtreecommitdiffhomepage
path: root/facetracknoir/gain-control.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'facetracknoir/gain-control.hpp')
-rw-r--r--facetracknoir/gain-control.hpp175
1 files changed, 175 insertions, 0 deletions
diff --git a/facetracknoir/gain-control.hpp b/facetracknoir/gain-control.hpp
new file mode 100644
index 00000000..28887700
--- /dev/null
+++ b/facetracknoir/gain-control.hpp
@@ -0,0 +1,175 @@
+#pragma once
+
+#include <algorithm>
+#undef NDEBUG
+#include <cassert>
+#include <iterator>
+#include <tuple>
+#include <deque>
+#include <vector>
+
+#include "timer.hpp"
+
+#include <opencv2/core/core.hpp>
+#include <opencv2/highgui/highgui.hpp>
+#include <opencv2/imgproc/imgproc.hpp>
+
+#include <QDebug>
+
+namespace detail {
+ template<typename t1, typename t2, typename t, typename m = t>
+ class zip_iterator : public std::iterator<std::forward_iterator_tag, t>
+ {
+ private:
+ using self = zip_iterator<t1, t2, t, m>;
+ t1 x1, z1;
+ t2 x2, z2;
+ void maybe_end() { if (x1 == z1 || x2 == z2) *this = end(); }
+ public:
+ zip_iterator(const t1& it1, const t1& end1, const t2& it2, const t2& end2)
+ : x1(it1), z1(end1), x2(it2), z2(end2) { maybe_end(); }
+ constexpr zip_iterator() {}
+
+ static constexpr self end() { return self(); }
+
+ self operator++() { x1++; x2++; self tmp = *this; maybe_end(); return tmp; }
+ self operator++(int) { self tmp(*this); x1++; x2++; maybe_end(); return tmp; }
+ bool operator==(const self& rhs) const { return x1 == rhs.x1 && x2 == rhs.x2; }
+ bool operator!=(const self& rhs) const { return !this->operator ==(rhs); }
+ t operator*() { return m(*x1, *x2); }
+ };
+}
+
+class Gain {
+private:
+ static constexpr bool use_box_filter = true;
+ static constexpr int box_size = 20 / 640.;
+ static constexpr double control_upper_bound = 1.0; // XXX FIXME implement for logitech crapola
+ static constexpr int GAIN_HISTORY_COUNT = 15, GAIN_HISTORY_EVERY_MS = 200;
+
+ int control;
+ double step, eps;
+
+ std::deque<double> means_history;
+
+ Timer debug_timer, history_timer;
+
+ typedef unsigned char px;
+ template<typename t1, typename t2, typename t, typename m = t>
+ using zip_iterator = detail::zip_iterator<t1, t2, t, m>;
+
+ static double mean(const cv::Mat& frame)
+ {
+ // grayscale only
+ assert(frame.channels() == 1);
+ assert(frame.elemSize() == 1);
+ assert(!frame.empty());
+
+ return std::accumulate(frame.begin<px>(), frame.end<px>(), 0.) / (frame.rows * frame.cols);
+ }
+
+ static double get_variance(const cv::Mat& frame, double mean)
+ {
+ struct variance {
+ private:
+ double mu;
+ public:
+ variance(double mu) : mu(mu) {}
+ double operator()(double seed, px p)
+ {
+ double tmp = p - mu;
+ return seed + tmp * tmp;
+ }
+ } logic(mean);
+
+ return std::accumulate(frame.begin<unsigned char>(), frame.end<unsigned char>(), 0., logic) / (frame.rows * frame.cols);
+ }
+
+ static double get_covariance(const cv::Mat& frame, double mean, double prev_mean)
+ {
+ struct covariance {
+ public:
+ using pair = std::tuple<px, px>;
+ private:
+ double mu_0, mu_1;
+
+ inline double Cov(double seed, const pair& t)
+ {
+ px p0 = std::get<0>(t);
+ px p1 = std::get<1>(t);
+ return seed + (p0 - mu_0) * (p1 - mu_1);
+ }
+ public:
+ covariance(double mu_0, double mu_1) : mu_0(mu_0), mu_1(mu_1) {}
+
+ double operator()(double seed, const pair& t)
+ {
+ return Cov(seed, t);
+ }
+ } logic(mean, prev_mean);
+
+ const double N = frame.rows * frame.cols;
+
+ using zipper = zip_iterator<cv::MatConstIterator_<px>,
+ cv::MatConstIterator_<px>,
+ std::tuple<px, px>>;
+
+ zipper zip(frame.begin<px>(),
+ frame.end<px>(),
+ frame.begin<px>(),
+ frame.end<px>());
+ std::vector<covariance::pair> values(zip, zipper::end());
+
+ return std::accumulate(values.begin(), values.end(), 0., logic) / N;
+ }
+
+#pragma GCC diagnostic ignored "-Wsign-compare"
+
+public:
+ Gain(int control = CV_CAP_PROP_GAIN, double step = 0.3, double eps = 0.02) :
+ control(control), step(step), eps(eps)
+ {
+ }
+
+ void tick(cv::VideoCapture&, const cv::Mat& frame_)
+ {
+ cv::Mat frame;
+
+ if (use_box_filter)
+ {
+ cv::Mat tmp(frame_);
+ static constexpr int min_box = 3;
+ static constexpr int box = 2 * box_size;
+ cv::blur(frame_, tmp, cv::Size(min_box + box * frame_.cols, min_box + box * frame_.rows));
+ frame = tmp;
+ }
+ else
+ frame = frame_;
+
+ const double mu = mean(frame);
+ const double var = get_variance(frame, mu);
+
+ if (debug_timer.elapsed_ms() > 500)
+ {
+ debug_timer.start();
+ qDebug() << "gain:" << "mean" << mu << "variance" << var;
+ }
+
+ const int sz = means_history.size();
+
+ for (int i = 0; i < sz; i++)
+ {
+ const double cov = get_covariance(frame, mu, means_history[i]);
+
+ qDebug() << "cov" << i << cov;
+ }
+
+ if (GAIN_HISTORY_COUNT > means_history.size() && history_timer.elapsed_ms() > GAIN_HISTORY_EVERY_MS)
+ {
+ means_history.push_front(mu);
+
+ if (GAIN_HISTORY_COUNT == means_history.size())
+ means_history.pop_back();
+ }
+ }
+};