summaryrefslogtreecommitdiffhomepage
path: root/filter-kalman
diff options
context:
space:
mode:
Diffstat (limited to 'filter-kalman')
-rw-r--r--filter-kalman/kalman.cpp6
1 files changed, 3 insertions, 3 deletions
diff --git a/filter-kalman/kalman.cpp b/filter-kalman/kalman.cpp
index 3a0da608..c70093bb 100644
--- a/filter-kalman/kalman.cpp
+++ b/filter-kalman/kalman.cpp
@@ -112,8 +112,8 @@ void kalman::fill_process_noise_cov_matrix(StateMatrix &target, double dt) const
// brownian motion. Unlike standard models for tracking of objects
// with a very well predictable trajectory (e.g.
// https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical)
- double sigma_pos = s.process_sigma_pos;
- double sigma_angle = s.process_sigma_rot;
+ double sigma_pos = settings::process_sigma_pos;
+ double sigma_angle = settings::process_sigma_rot;
double a_pos = sigma_pos * sigma_pos * dt;
double a_ang = sigma_angle * sigma_angle * dt;
constexpr double b = 20;
@@ -238,7 +238,7 @@ void kalman::filter(const double* input_, double *output_)
// We can use this to calculate the size of the deadzone, so that in the stationary state the
// deadzone size is small. Thus the tracking error due to the dz-filter becomes also small.
PoseVector variance = kf.state_cov.diagonal().head(6);
- dz_filter.dz_size = variance.cwiseSqrt() * s.deadzone_scale;
+ dz_filter.dz_size = variance.cwiseSqrt() * settings::deadzone_scale;
}
output = dz_filter.filter(output);