diff options
Diffstat (limited to 'ftnoir_tracker_pt/point_tracker.cpp')
-rw-r--r-- | ftnoir_tracker_pt/point_tracker.cpp | 352 |
1 files changed, 0 insertions, 352 deletions
diff --git a/ftnoir_tracker_pt/point_tracker.cpp b/ftnoir_tracker_pt/point_tracker.cpp deleted file mode 100644 index 210ed2eb..00000000 --- a/ftnoir_tracker_pt/point_tracker.cpp +++ /dev/null @@ -1,352 +0,0 @@ -/* Copyright (c) 2012 Patrick Ruoff - * - * Permission to use, copy, modify, and/or distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - */ - -#include "point_tracker.h" - -#include <vector> -#include <algorithm> -#include <cmath> - -#include <QDebug> - -using namespace cv; -using namespace std; - -const float PI = 3.14159265358979323846f; - -// ---------------------------------------------------------------------------- -static void get_row(const Matx33f& m, int i, Vec3f& v) -{ - v[0] = m(i,0); - v[1] = m(i,1); - v[2] = m(i,2); -} - -static void set_row(Matx33f& m, int i, const Vec3f& v) -{ - m(i,0) = v[0]; - m(i,1) = v[1]; - m(i,2) = v[2]; -} - -// ---------------------------------------------------------------------------- -PointModel::PointModel(Vec3f M01, Vec3f M02) - : M01(M01), M02(M02) -{ - // calculate u - u = M01.cross(M02); - u /= norm(u); - - // calculate projection matrix on M01,M02 plane - float s11 = M01.dot(M01); - float s12 = M01.dot(M02); - float s22 = M02.dot(M02); - P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12, - -s12, s11); - - // calculate d and d_order for simple freetrack-like point correspondence - vector<Vec2f> points; - points.push_back(Vec2f(0,0)); - points.push_back(Vec2f(M01[0], M01[1])); - points.push_back(Vec2f(M02[0], M02[1])); - // fit line to orthographically projected points - // ERROR: yields wrong results with colinear points?! - /* - Vec4f line; - fitLine(points, line, CV_DIST_L2, 0, 0.01, 0.01); - d[0] = line[0]; d[1] = line[1]; - */ - // TODO: fix this - d = Vec2f(M01[0]-M02[0], M01[1]-M02[1]); - - // sort model points - get_d_order(points, d_order); -} - -static bool d_vals_sort(const pair<float,int> a, const pair<float,int> b) -{ - return a.first < b.first; -} - -void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[]) const -{ - // get sort indices with respect to d scalar product - vector< pair<float,int> > d_vals; - for (int i = 0; i<(int)points.size(); ++i) - d_vals.push_back(pair<float, int>(d.dot(points[i]), i)); - - sort(d_vals.begin(), d_vals.end(), d_vals_sort); - - for (int i = 0; i<(int)points.size(); ++i) - d_order[i] = d_vals[i].second; -} - - -// ---------------------------------------------------------------------------- -PointTracker::PointTracker() : dynamic_pose_resolution(true), dt_reset(1), init_phase(true), dt_valid(0), v_t(0,0,0), v_r(0,0,0) -{ - X_CM.t[2] = 1000; // default position: 1 m away from cam; -} - -void PointTracker::reset() -{ - // enter init phase and reset velocities - init_phase = true; - dt_valid = 0; - reset_velocities(); -} - -void PointTracker::reset_velocities() -{ - v_t = Vec3f(0,0,0); - v_r = Vec3f(0,0,0); -} - - -bool PointTracker::track(const vector<Vec2f>& points, float f, float dt) -{ - if (!dynamic_pose_resolution) init_phase = true; - - dt_valid += dt; - // if there was no valid tracking result for too long, do a reset - if (dt_valid > dt_reset) - { - //qDebug()<<"dt_valid "<<dt_valid<<" > dt_reset "<<dt_reset; - reset(); - } - - // if there is a pointtracking problem, reset the velocities - if (!point_model.get() || (int) points.size() != PointModel::N_POINTS) - { - //qDebug()<<"Wrong number of points!"; - reset_velocities(); - return false; - } - - X_CM_old = X_CM; // backup old transformation for velocity calculation - - if (!init_phase) - predict(dt_valid); - - // if there is a point correspondence problem something has gone wrong, do a reset - if (!find_correspondences(points, f)) - { - //qDebug()<<"Error in finding point correspondences!"; - X_CM = X_CM_old; // undo prediction - reset(); - return false; - } - - (void) POSIT(f); - //qDebug()<<"Number of POSIT iterations: "<<n_iter; - - if (!init_phase) - update_velocities(dt_valid); - - // we have a valid tracking result, leave init phase and reset time since valid result - init_phase = false; - dt_valid = 0; - return true; -} - -void PointTracker::predict(float dt) -{ - // predict with constant velocity - Matx33f R; - Rodrigues(dt*v_r, R); - X_CM.R = R*X_CM.R; - X_CM.t += dt * v_t; -} - -void PointTracker::update_velocities(float dt) -{ - // update velocities - Rodrigues(X_CM.R*X_CM_old.R.t(), v_r); - v_r /= dt; - v_t = (X_CM.t - X_CM_old.t)/dt; -} - -bool PointTracker::find_correspondences(const vector<Vec2f>& points, float f) -{ - if (init_phase) { - // We do a simple freetrack-like sorting in the init phase... - // sort points - int point_d_order[PointModel::N_POINTS]; - point_model->get_d_order(points, point_d_order); - - // set correspondences - for (int i=0; i<PointModel::N_POINTS; ++i) - { - p[point_model->d_order[i]] = points[point_d_order[i]]; - } - } - else { - // ... otherwise we look at the distance to the projection of the expected model points - // project model points under current pose - p_exp[0] = project(Vec3f(0,0,0), f); - p_exp[1] = project(point_model->M01, f); - p_exp[2] = project(point_model->M02, f); - - // set correspondences by minimum distance to projected model point - bool point_taken[PointModel::N_POINTS]; - for (int i=0; i<PointModel::N_POINTS; ++i) - point_taken[i] = false; - - float min_sdist = 0; - int min_idx = 0; - - for (int i=0; i<PointModel::N_POINTS; ++i) - { - // find closest point to projected model point i - for (int j=0; j<PointModel::N_POINTS; ++j) - { - Vec2f d = p_exp[i]-points[j]; - float sdist = d.dot(d); - if (sdist < min_sdist || j==0) - { - min_idx = j; - min_sdist = sdist; - } - } - // if one point is closest to more than one model point, abort - if (point_taken[min_idx]) return false; - point_taken[min_idx] = true; - p[i] = points[min_idx]; - } - } - return true; -} - - - -int PointTracker::POSIT(float f) -{ - // POSIT algorithm for coplanar points as presented in - // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] - // we use the same notation as in the paper here - - // The expected rotation used for resolving the ambiguity in POSIT: - // In every iteration step the rotation closer to R_expected is taken - Matx33f R_expected; - if (init_phase) - R_expected = Matx33f::eye(); // in the init phase, we want to be close to the default pose = no rotation - else - R_expected = X_CM.R; // later we want to be close to the last (predicted) rotation - - // initial pose = last (predicted) pose - Vec3f k; - get_row(X_CM.R, 2, k); - float Z0 = X_CM.t[2]; - - float old_epsilon_1 = 0; - float old_epsilon_2 = 0; - float epsilon_1 = 1; - float epsilon_2 = 1; - - Vec3f I0, J0; - Vec2f I0_coeff, J0_coeff; - - Vec3f I_1, J_1, I_2, J_2; - Matx33f R_1, R_2; - Matx33f* R_current; - - const int MAX_ITER = 100; - const float EPS_THRESHOLD = 1e-4; - - int i=1; - for (; i<MAX_ITER; ++i) - { - epsilon_1 = k.dot(point_model->M01)/Z0; - epsilon_2 = k.dot(point_model->M02)/Z0; - - // vector of scalar products <I0, M0i> and <J0, M0i> - Vec2f I0_M0i(p[1][0]*(1.0 + epsilon_1) - p[0][0], - p[2][0]*(1.0 + epsilon_2) - p[0][0]); - Vec2f J0_M0i(p[1][1]*(1.0 + epsilon_1) - p[0][1], - p[2][1]*(1.0 + epsilon_2) - p[0][1]); - - // construct projection of I, J onto M0i plane: I0 and J0 - I0_coeff = point_model->P * I0_M0i; - J0_coeff = point_model->P * J0_M0i; - I0 = I0_coeff[0]*point_model->M01 + I0_coeff[1]*point_model->M02; - J0 = J0_coeff[0]*point_model->M01 + J0_coeff[1]*point_model->M02; - - // calculate u component of I, J - float II0 = I0.dot(I0); - float IJ0 = I0.dot(J0); - float JJ0 = J0.dot(J0); - float rho, theta; - if (JJ0 == II0) { - rho = sqrt(abs(2*IJ0)); - theta = -PI/4; - if (IJ0<0) theta *= -1; - } - else { - rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); - theta = atan( -2*IJ0 / (JJ0-II0) ); - if (JJ0 - II0 < 0) theta += PI; - theta /= 2; - } - - // construct the two solutions - I_1 = I0 + rho*cos(theta)*point_model->u; - I_2 = I0 - rho*cos(theta)*point_model->u; - - J_1 = J0 + rho*sin(theta)*point_model->u; - J_2 = J0 - rho*sin(theta)*point_model->u; - - float norm_const = 1.0/norm(I_1); // all have the same norm - - // create rotation matrices - I_1 *= norm_const; J_1 *= norm_const; - I_2 *= norm_const; J_2 *= norm_const; - - set_row(R_1, 0, I_1); - set_row(R_1, 1, J_1); - set_row(R_1, 2, I_1.cross(J_1)); - - set_row(R_2, 0, I_2); - set_row(R_2, 1, J_2); - set_row(R_2, 2, I_2.cross(J_2)); - - // the single translation solution - Z0 = norm_const * f; - - // pick the rotation solution closer to the expected one - // in simple metric d(A,B) = || I - A * B^T || - float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t()); - float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t()); - - if (R_1_deviation < R_2_deviation) - R_current = &R_1; - else - R_current = &R_2; - - get_row(*R_current, 2, k); - - // check for convergence condition - if (abs(epsilon_1 - old_epsilon_1) + abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) - break; - old_epsilon_1 = epsilon_1; - old_epsilon_2 = epsilon_2; - } - - // apply results - X_CM.R = *R_current; - X_CM.t[0] = p[0][0] * Z0/f; - X_CM.t[1] = p[0][1] * Z0/f; - X_CM.t[2] = Z0; - - return i; - - //Rodrigues(X_CM.R, r); - //qDebug()<<"iter: "<<i; - //qDebug()<<"t: "<<X_CM.t[0]<<' '<<X_CM.t[1]<<' '<<X_CM.t[2]; - //Vec3f r; - // - //qDebug()<<"r: "<<r[0]<<' '<<r[1]<<' '<<r[2]<<'\n'; -} |