diff options
Diffstat (limited to 'ftnoir_tracker_pt/point_tracker.cpp')
-rw-r--r-- | ftnoir_tracker_pt/point_tracker.cpp | 75 |
1 files changed, 43 insertions, 32 deletions
diff --git a/ftnoir_tracker_pt/point_tracker.cpp b/ftnoir_tracker_pt/point_tracker.cpp index 5f57baf5..8a633c5d 100644 --- a/ftnoir_tracker_pt/point_tracker.cpp +++ b/ftnoir_tracker_pt/point_tracker.cpp @@ -33,10 +33,14 @@ static void set_row(Matx33f& m, int i, const Vec3f& v) m(i,2) = v[2]; } -// ---------------------------------------------------------------------------- +PointModel::PointModel() : + M01 { 0, 0, 0 }, + M02 { 0, 0, 0 } +{ +} + PointModel::PointModel(Vec3f M01, Vec3f M02) - : M01(M01), - M02(M02) + : M01(M01), M02(M02) { // calculate u u = M01.cross(M02); @@ -107,27 +111,31 @@ void PointTracker::reset() X_CM = FrameTrafo(); } -void PointTracker::track(const vector<Vec2f>& points, float f) +void PointTracker::track(const vector<Vec2f>& projected_points, const PointModel& model) { - find_correspondences(points, f); - (void) POSIT(f); - //qDebug()<<"Number of POSIT iterations: "<<n_iter; + const PointOrder& order = find_correspondences(projected_points, model); + int iters = POSIT(model, order); + qDebug()<<"POSIT iterations:"<<iters; } -void PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, float f) +PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& projected_points, const PointModel& model) { // ... otherwise we look at the distance to the projection of the expected model points // project model points under current pose Vec2f p_exp[3]; - p_exp[0] = project(Vec3f(0,0,0), f); - p_exp[1] = project(point_model->M01, f); - p_exp[2] = project(point_model->M02, f); + p_exp[0] = project(Vec3f(0,0,0)); + p_exp[1] = project(model.get_M01()); + p_exp[2] = project(model.get_M02()); // set correspondences by minimum distance to projected model point bool point_taken[PointModel::N_POINTS]; for (int i=0; i<PointModel::N_POINTS; ++i) point_taken[i] = false; + PointOrder p; + for (int i=0; i<PointModel::N_POINTS; ++i) + p.points[i] = Vec2f(0, 0); + for (int i=0; i<PointModel::N_POINTS; ++i) { float min_sdist = 1e4; @@ -135,7 +143,7 @@ void PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, fl // find closest point to projected model point i for (int j=0; j<PointModel::N_POINTS; ++j) { - Vec2f d = p_exp[i]-points[j]; + Vec2f d = p_exp[i]-projected_points[j]; float sdist = d.dot(d); if (sdist < min_sdist) { @@ -144,15 +152,16 @@ void PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, fl } } // if one point is closest to more than one model point, abort - if (point_taken[min_idx]) return; + if (point_taken[min_idx]) return p; point_taken[min_idx] = true; - p[i] = points[min_idx]; + p.points[i] = projected_points[min_idx]; } + return p; } -int PointTracker::POSIT(float f) +int PointTracker::POSIT(const PointModel& model, const PointOrder& order_) { // POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] @@ -182,24 +191,26 @@ int PointTracker::POSIT(float f) const int MAX_ITER = 100; const float EPS_THRESHOLD = 1e-4; + + const cv::Vec2f* order = order_.points; int i=1; for (; i<MAX_ITER; ++i) { - epsilon_1 = k.dot(point_model->M01)/Z0; - epsilon_2 = k.dot(point_model->M02)/Z0; + epsilon_1 = k.dot(model.M01)/Z0; + epsilon_2 = k.dot(model.M02)/Z0; // vector of scalar products <I0, M0i> and <J0, M0i> - Vec2f I0_M0i(p[1][0]*(1.0 + epsilon_1) - p[0][0], - p[2][0]*(1.0 + epsilon_2) - p[0][0]); - Vec2f J0_M0i(p[1][1]*(1.0 + epsilon_1) - p[0][1], - p[2][1]*(1.0 + epsilon_2) - p[0][1]); + Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0], + order[2][0]*(1.0 + epsilon_2) - order[0][0]); + Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1], + order[2][1]*(1.0 + epsilon_2) - order[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 - I0_coeff = point_model->P * I0_M0i; - J0_coeff = point_model->P * J0_M0i; - I0 = I0_coeff[0]*point_model->M01 + I0_coeff[1]*point_model->M02; - J0 = J0_coeff[0]*point_model->M01 + J0_coeff[1]*point_model->M02; + I0_coeff = model.P * I0_M0i; + J0_coeff = model.P * J0_M0i; + I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; + J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; // calculate u component of I, J float II0 = I0.dot(I0); @@ -219,11 +230,11 @@ int PointTracker::POSIT(float f) } // construct the two solutions - I_1 = I0 + rho*cos(theta)*point_model->u; - I_2 = I0 - rho*cos(theta)*point_model->u; + I_1 = I0 + rho*cos(theta)*model.u; + I_2 = I0 - rho*cos(theta)*model.u; - J_1 = J0 + rho*sin(theta)*point_model->u; - J_2 = J0 - rho*sin(theta)*point_model->u; + J_1 = J0 + rho*sin(theta)*model.u; + J_2 = J0 - rho*sin(theta)*model.u; float norm_const = 1.0/norm(I_1); // all have the same norm @@ -240,7 +251,7 @@ int PointTracker::POSIT(float f) set_row(R_2, 2, I_2.cross(J_2)); // the single translation solution - Z0 = norm_const * f; + Z0 = norm_const * focal_length; // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || @@ -263,8 +274,8 @@ int PointTracker::POSIT(float f) // apply results X_CM.R = *R_current; - X_CM.t[0] = p[0][0] * Z0/f; - X_CM.t[1] = p[0][1] * Z0/f; + X_CM.t[0] = order[0][0] * Z0/focal_length; + X_CM.t[1] = order[0][1] * Z0/focal_length; X_CM.t[2] = Z0; return i; |