diff options
Diffstat (limited to 'ftnoir_tracker_pt/point_tracker.cpp')
-rw-r--r-- | ftnoir_tracker_pt/point_tracker.cpp | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/ftnoir_tracker_pt/point_tracker.cpp b/ftnoir_tracker_pt/point_tracker.cpp new file mode 100644 index 00000000..8a633c5d --- /dev/null +++ b/ftnoir_tracker_pt/point_tracker.cpp @@ -0,0 +1,289 @@ +/* Copyright (c) 2012 Patrick Ruoff + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + */ + +#include "point_tracker.h" + +#include <vector> +#include <algorithm> +#include <cmath> + +#include <QDebug> + +using namespace cv; +using namespace std; + +const float PI = 3.14159265358979323846f; + +// ---------------------------------------------------------------------------- +static void get_row(const Matx33f& m, int i, Vec3f& v) +{ + v[0] = m(i,0); + v[1] = m(i,1); + v[2] = m(i,2); +} + +static void set_row(Matx33f& m, int i, const Vec3f& v) +{ + m(i,0) = v[0]; + m(i,1) = v[1]; + m(i,2) = v[2]; +} + +PointModel::PointModel() : + M01 { 0, 0, 0 }, + M02 { 0, 0, 0 } +{ +} + +PointModel::PointModel(Vec3f M01, Vec3f M02) + : M01(M01), M02(M02) +{ + // calculate u + u = M01.cross(M02); + u /= norm(u); + + // calculate projection matrix on M01,M02 plane + float s11 = M01.dot(M01); + float s12 = M01.dot(M02); + float s22 = M02.dot(M02); + P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12, + -s12, s11); + // calculate d and d_order for simple freetrack-like point correspondence + vector<Vec2f> points; + points.push_back(Vec2f(0,0)); + points.push_back(Vec2f(M01[0], M01[1])); + points.push_back(Vec2f(M02[0], M02[1])); + // fit line to orthographically projected points + // ERROR: yields wrong results with colinear points?! + /* + Vec4f line; + fitLine(points, line, CV_DIST_L2, 0, 0.01, 0.01); + d[0] = line[0]; d[1] = line[1]; + */ + // TODO: fix this + d = Vec2f(M01[0]-M02[0], M01[1]-M02[1]); + + // sort model points + get_d_order(points, d_order); +} + +#ifdef OPENTRACK_API +static bool d_vals_sort(const pair<float,int> a, const pair<float,int> b) +{ + return a.first < b.first; +} +#endif + +void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[]) const +{ + // get sort indices with respect to d scalar product + vector< pair<float,int> > d_vals; + for (unsigned i = 0; i<points.size(); ++i) + d_vals.push_back(pair<float, int>(d.dot(points[i]), i)); + + std::sort(d_vals.begin(), + d_vals.end(), +#ifdef OPENTRACK_API + d_vals_sort +#else + comp +#endif + ); + + for (unsigned i = 0; i<points.size(); ++i) + d_order[i] = d_vals[i].second; +} + + +// ---------------------------------------------------------------------------- +PointTracker::PointTracker() +{ + X_CM.t[2] = 1000; // default position: 1 m away from cam; +} + +void PointTracker::reset() +{ + // enter init phase + X_CM = FrameTrafo(); +} + +void PointTracker::track(const vector<Vec2f>& projected_points, const PointModel& model) +{ + const PointOrder& order = find_correspondences(projected_points, model); + int iters = POSIT(model, order); + qDebug()<<"POSIT iterations:"<<iters; +} + +PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& projected_points, const PointModel& model) +{ + // ... otherwise we look at the distance to the projection of the expected model points + // project model points under current pose + Vec2f p_exp[3]; + p_exp[0] = project(Vec3f(0,0,0)); + p_exp[1] = project(model.get_M01()); + p_exp[2] = project(model.get_M02()); + + // set correspondences by minimum distance to projected model point + bool point_taken[PointModel::N_POINTS]; + for (int i=0; i<PointModel::N_POINTS; ++i) + point_taken[i] = false; + + PointOrder p; + for (int i=0; i<PointModel::N_POINTS; ++i) + p.points[i] = Vec2f(0, 0); + + for (int i=0; i<PointModel::N_POINTS; ++i) + { + float min_sdist = 1e4; + int min_idx = 0; + // find closest point to projected model point i + for (int j=0; j<PointModel::N_POINTS; ++j) + { + Vec2f d = p_exp[i]-projected_points[j]; + float sdist = d.dot(d); + if (sdist < min_sdist) + { + min_idx = j; + min_sdist = sdist; + } + } + // if one point is closest to more than one model point, abort + if (point_taken[min_idx]) return p; + point_taken[min_idx] = true; + p.points[i] = projected_points[min_idx]; + } + return p; +} + + + +int PointTracker::POSIT(const PointModel& model, const PointOrder& order_) +{ + // POSIT algorithm for coplanar points as presented in + // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] + // we use the same notation as in the paper here + + // The expected rotation used for resolving the ambiguity in POSIT: + // In every iteration step the rotation closer to R_expected is taken + Matx33f R_expected; + R_expected = X_CM.R; // later we want to be close to the last (predicted) rotation + + // initial pose = last (predicted) pose + Vec3f k; + get_row(R_expected, 2, k); + float Z0 = std::abs(X_CM.t[2]) < 1e-3 ? 1e3 : X_CM.t[2]; + + float old_epsilon_1 = 0; + float old_epsilon_2 = 0; + float epsilon_1 = 1; + float epsilon_2 = 1; + + Vec3f I0, J0; + Vec2f I0_coeff, J0_coeff; + + Vec3f I_1, J_1, I_2, J_2; + Matx33f R_1, R_2; + Matx33f* R_current; + + const int MAX_ITER = 100; + const float EPS_THRESHOLD = 1e-4; + + const cv::Vec2f* order = order_.points; + + int i=1; + for (; i<MAX_ITER; ++i) + { + epsilon_1 = k.dot(model.M01)/Z0; + epsilon_2 = k.dot(model.M02)/Z0; + + // vector of scalar products <I0, M0i> and <J0, M0i> + Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0], + order[2][0]*(1.0 + epsilon_2) - order[0][0]); + Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1], + order[2][1]*(1.0 + epsilon_2) - order[0][1]); + + // construct projection of I, J onto M0i plane: I0 and J0 + I0_coeff = model.P * I0_M0i; + J0_coeff = model.P * J0_M0i; + I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; + J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; + + // calculate u component of I, J + float II0 = I0.dot(I0); + float IJ0 = I0.dot(J0); + float JJ0 = J0.dot(J0); + float rho, theta; + if (JJ0 == II0) { + rho = sqrt(abs(2*IJ0)); + theta = -PI/4; + if (IJ0<0) theta *= -1; + } + else { + rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); + theta = atan( -2*IJ0 / (JJ0-II0) ); + if (JJ0 - II0 < 0) theta += PI; + theta /= 2; + } + + // construct the two solutions + I_1 = I0 + rho*cos(theta)*model.u; + I_2 = I0 - rho*cos(theta)*model.u; + + J_1 = J0 + rho*sin(theta)*model.u; + J_2 = J0 - rho*sin(theta)*model.u; + + float norm_const = 1.0/norm(I_1); // all have the same norm + + // create rotation matrices + I_1 *= norm_const; J_1 *= norm_const; + I_2 *= norm_const; J_2 *= norm_const; + + set_row(R_1, 0, I_1); + set_row(R_1, 1, J_1); + set_row(R_1, 2, I_1.cross(J_1)); + + set_row(R_2, 0, I_2); + set_row(R_2, 1, J_2); + set_row(R_2, 2, I_2.cross(J_2)); + + // the single translation solution + Z0 = norm_const * focal_length; + + // pick the rotation solution closer to the expected one + // in simple metric d(A,B) = || I - A * B^T || + float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t()); + float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t()); + + if (R_1_deviation < R_2_deviation) + R_current = &R_1; + else + R_current = &R_2; + + get_row(*R_current, 2, k); + + // check for convergence condition + if (abs(epsilon_1 - old_epsilon_1) + abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) + break; + old_epsilon_1 = epsilon_1; + old_epsilon_2 = epsilon_2; + } + + // apply results + X_CM.R = *R_current; + X_CM.t[0] = order[0][0] * Z0/focal_length; + X_CM.t[1] = order[0][1] * Z0/focal_length; + X_CM.t[2] = Z0; + + return i; + + //Rodrigues(X_CM.R, r); + //qDebug()<<"iter: "<<i; + //qDebug()<<"t: "<<X_CM.t[0]<<' '<<X_CM.t[1]<<' '<<X_CM.t[2]; + //Vec3f r; + // + //qDebug()<<"r: "<<r[0]<<' '<<r[1]<<' '<<r[2]<<'\n'; +} |