diff options
Diffstat (limited to 'tracker-neuralnet/ftnoir_tracker_neuralnet.cpp')
-rw-r--r-- | tracker-neuralnet/ftnoir_tracker_neuralnet.cpp | 206 |
1 files changed, 163 insertions, 43 deletions
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp index f849f4e1..352baf29 100644 --- a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp +++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp @@ -15,6 +15,7 @@ #include <opencv2/calib3d.hpp> #include <opencv2/imgcodecs.hpp> #include "compat/timer.hpp" +#include "compat/check-visible.hpp" #include <omp.h> #ifdef _MSC_VER @@ -54,6 +55,18 @@ std::string convert(const QString &s) { return s.toStdString(); } #endif +template<class F> +struct OnScopeExit +{ + explicit OnScopeExit(F&& f) : f_{ f } {} + ~OnScopeExit() noexcept + { + f_(); + } + F f_; +}; + + float sigmoid(float x) { return 1.f/(1.f + std::exp(-x)); @@ -88,7 +101,6 @@ cv::Rect make_crop_rect_multiple_of(const cv::Size &size, int multiple) ); } - template<class T> cv::Rect_<T> squarize(const cv::Rect_<T> &r) { @@ -592,12 +604,20 @@ double PoseEstimator::last_inference_time_millis() const bool neuralnet_tracker::detect() { + double inference_time = 0.; + + OnScopeExit update_inference_time{ [&]() { + + QMutexLocker lck{ &stats_mtx_ }; + inference_time_ = inference_time; + } }; + // Note: BGR colors! if (!last_localizer_roi || !last_roi || iou(*last_localizer_roi,*last_roi)<0.25) { - auto [p, rect] = localizer->run(grayscale); - last_inference_time += localizer->last_inference_time_millis(); + auto [p, rect] = localizer->run(grayscale_); + inference_time += localizer->last_inference_time_millis(); if (p > 0.5 || rect.height < 5 || rect.width < 5) { last_localizer_roi = rect; @@ -612,17 +632,17 @@ bool neuralnet_tracker::detect() if (!last_roi) { - draw_gizmos(frame, {}, {}); + draw_gizmos({}, {}); return false; } - auto face = poseestimator->run(grayscale, *last_roi); - last_inference_time += poseestimator->last_inference_time_millis(); + auto face = poseestimator->run(grayscale_, *last_roi); + inference_time += poseestimator->last_inference_time_millis(); if (!face) { last_roi.reset(); - draw_gizmos(frame, *face, {}); + draw_gizmos(*face, {}); return false; } @@ -646,7 +666,7 @@ bool neuralnet_tracker::detect() Affine pose = compute_pose(*face); - draw_gizmos(frame, *face, pose); + draw_gizmos(*face, pose); { QMutexLocker lck(&mtx); @@ -657,12 +677,31 @@ bool neuralnet_tracker::detect() } +void neuralnet_tracker::draw_gizmos( + const std::optional<PoseEstimator::Face> &face, + const Affine& pose) +{ + if (!is_visible_) + return; + + preview_.draw_gizmos(face, pose, last_roi, last_localizer_roi, world_to_image(pose.t, grayscale_.size(), intrinsics)); + + if (settings.show_network_input) + { + cv::Mat netinput = poseestimator->last_network_input(); + preview_.overlay_netinput(netinput); + } + + //preview_.draw_fps(fps, last_inference_time); +} + + Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const { // Compute the location the network outputs in 3d space. const mat33 rot_correction = compute_rotation_correction( - normalize(face.center, frame.rows, frame.cols), + normalize(face.center, grayscale_.rows, grayscale_.cols), intrinsics.focal_length_w); const mat33 m = rot_correction * quaternion_to_mat33( @@ -683,16 +722,15 @@ Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const const vec3 face_world_pos = image_to_world( face.center.x, face.center.y, face.size, head_size_mm, - frame.size(), + grayscale_.size(), intrinsics); // But this is in general not the location of the rotation joint in the neck. // So we need an extra offset. Which we determine by solving // z,y,z-pos = head_joint_loc + R_face * offset - const vec3 pos = face_world_pos + m * vec3{ - static_cast<float>(settings.offset_fwd), + static_cast<float>(settings.offset_fwd), static_cast<float>(settings.offset_up), static_cast<float>(settings.offset_right)}; @@ -700,27 +738,50 @@ Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const } -void neuralnet_tracker::draw_gizmos( - cv::Mat frame, +void Preview::init(const cv_video_widget& widget) +{ + auto [w,h] = widget.preview_size(); + preview_size_ = { w, h }; +} + + +void Preview::copy_video_frame(const cv::Mat& frame) +{ + cv::Rect roi = make_crop_rect_for_aspect(frame.size(), preview_size_.width, preview_size_.height); + + cv::resize(frame(roi), preview_image_, preview_size_, 0, 0, cv::INTER_NEAREST); + + offset_ = { (float)-roi.x, (float)-roi.y }; + scale_ = float(preview_image_.cols) / float(roi.width); +} + + +void Preview::draw_gizmos( const std::optional<PoseEstimator::Face> &face, - const Affine& pose) const + const Affine& pose, + const std::optional<cv::Rect2f>& last_roi, + const std::optional<cv::Rect2f>& last_localizer_roi, + const cv::Point2f& neckjoint_position) { + if (preview_image_.empty()) + return; + if (last_roi) { const int col = 255; - cv::rectangle(frame, *last_roi, cv::Scalar(0, col, 0), /*thickness=*/1); + cv::rectangle(preview_image_, transform(*last_roi), cv::Scalar(0, col, 0), /*thickness=*/1); } if (last_localizer_roi) { const int col = 255; - cv::rectangle(frame, *last_localizer_roi, cv::Scalar(col, 0, 255-col), /*thickness=*/1); + cv::rectangle(preview_image_, transform(*last_localizer_roi), cv::Scalar(col, 0, 255-col), /*thickness=*/1); } if (face) { if (face->size>=1.f) - cv::circle(frame, static_cast<cv::Point>(face->center), int(face->size), cv::Scalar(255,255,255), 2); - cv::circle(frame, static_cast<cv::Point>(face->center), 3, cv::Scalar(255,255,255), -1); + cv::circle(preview_image_, static_cast<cv::Point>(transform(face->center)), int(transform(face->size)), cv::Scalar(255,255,255), 2); + cv::circle(preview_image_, static_cast<cv::Point>(transform(face->center)), 3, cv::Scalar(255,255,255), -1); auto draw_coord_line = [&](int i, const cv::Scalar& color) { @@ -728,32 +789,57 @@ void neuralnet_tracker::draw_gizmos( const float vy = -pose.R(1,i); static constexpr float len = 100.f; cv::Point q = face->center + len*cv::Point2f{vx, vy}; - cv::line(frame, static_cast<cv::Point>(face->center), static_cast<cv::Point>(q), color, 2); + cv::line(preview_image_, static_cast<cv::Point>(transform(face->center)), static_cast<cv::Point>(transform(q)), color, 2); }; draw_coord_line(0, {0, 0, 255}); draw_coord_line(1, {0, 255, 0}); draw_coord_line(2, {255, 0, 0}); // Draw the computed joint position - auto xy = world_to_image(pose.t, frame.size(), intrinsics); - cv::circle(frame, cv::Point(xy[0],xy[1]), 5, cv::Scalar(0,0,255), -1); + auto xy = transform(neckjoint_position); + cv::circle(preview_image_, cv::Point(xy.x,xy.y), 5, cv::Scalar(0,0,255), -1); } +} - if (settings.show_network_input) - { - cv::Mat netinput = poseestimator->last_network_input(); - if (!netinput.empty()) - { - const int w = std::min(netinput.cols, frame.cols); - const int h = std::min(netinput.rows, frame.rows); - cv::Rect roi(0, 0, w, h); - netinput(roi).copyTo(frame(roi)); - } - } +void Preview::overlay_netinput(const cv::Mat& netinput) +{ + if (netinput.empty()) + return; + const int w = std::min(netinput.cols, preview_image_.cols); + const int h = std::min(netinput.rows, preview_image_.rows); + cv::Rect roi(0, 0, w, h); + netinput(roi).copyTo(preview_image_(roi)); +} + +void Preview::draw_fps(double fps, double last_inference_time) +{ char buf[128]; ::snprintf(buf, sizeof(buf), "%d Hz, pose inference: %d ms", std::clamp(int(fps), 0, 9999), int(last_inference_time)); - cv::putText(frame, buf, cv::Point(10, frame.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1); + cv::putText(preview_image_, buf, cv::Point(10, preview_image_.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1); +} + + +void Preview::copy_to_widget(cv_video_widget& widget) +{ + if (preview_image_.rows > 0) + widget.update_image(preview_image_); +} + + +cv::Rect2f Preview::transform(const cv::Rect2f& r) const +{ + return { (r.x - offset_.x)*scale_, (r.y - offset_.y)*scale_, r.width*scale_, r.height*scale_ }; +} + +cv::Point2f Preview::transform(const cv::Point2f& p) const +{ + return { (p.x - offset_.x)*scale_ , (p.y - offset_.y)*scale_ }; +} + +float Preview::transform(float s) const +{ + return s * scale_; } @@ -856,13 +942,14 @@ bool neuralnet_tracker::open_camera() qDebug() << "neuralnet tracker: can't open camera"; return false; } + return true; } void neuralnet_tracker::set_intrinsics() { - const int w = grayscale.cols, h = grayscale.rows; + const int w = grayscale_.cols, h = grayscale_.rows; const double diag_fov = settings.fov * M_PI / 180.; const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w)); const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h)); @@ -902,6 +989,8 @@ class GuardedThreadCountSwitch void neuralnet_tracker::run() { + preview_.init(*videoWidget); + GuardedThreadCountSwitch switch_num_threads_to(num_threads); if (!open_camera()) @@ -914,7 +1003,7 @@ void neuralnet_tracker::run() while (!isInterruptionRequested()) { - last_inference_time = 0; + is_visible_ = check_is_visible(); auto t = clk.now(); { QMutexLocker l(&camera_mtx); @@ -928,18 +1017,24 @@ void neuralnet_tracker::run() continue; } + { + QMutexLocker lck{&stats_mtx_}; + resolution_ = { img.width, img.height }; + } + auto color = prepare_input_image(img); - color.copyTo(frame); + if (is_visible_) + preview_.copy_video_frame(color); switch (img.channels) { case 1: - grayscale.create(img.height, img.width, CV_8UC1); - color.copyTo(grayscale); + grayscale_.create(img.height, img.width, CV_8UC1); + color.copyTo(grayscale_); break; case 3: - cv::cvtColor(color, grayscale, cv::COLOR_BGR2GRAY); + cv::cvtColor(color, grayscale_, cv::COLOR_BGR2GRAY); break; default: qDebug() << "Can't handle" << img.channels << "color channels"; @@ -951,8 +1046,8 @@ void neuralnet_tracker::run() detect(); - if (frame.rows > 0) - videoWidget->update_image(frame); + if (is_visible_) + preview_.copy_to_widget(*videoWidget); update_fps( std::chrono::duration_cast<std::chrono::milliseconds>( @@ -991,9 +1086,9 @@ cv::Mat neuralnet_tracker::prepare_input_image(const video::frame& frame) void neuralnet_tracker::update_fps(double dt) { const double alpha = dt/(dt + RC); - if (dt > 1e-6) { + QMutexLocker lck{&stats_mtx_}; fps *= 1 - alpha; fps += alpha * 1./dt; } @@ -1035,6 +1130,11 @@ Affine neuralnet_tracker::pose() return pose_; } +std::tuple<cv::Size,double, double> neuralnet_tracker::stats() const +{ + QMutexLocker lck(&stats_mtx_); + return { resolution_, fps, inference_time_ }; +} void neuralnet_dialog::make_fps_combobox() { @@ -1094,6 +1194,10 @@ neuralnet_dialog::neuralnet_dialog() : connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step); calib_timer.setInterval(35); connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool))); + + connect(&tracker_status_poll_timer, &QTimer::timeout, this, &neuralnet_dialog::status_poll); + tracker_status_poll_timer.setInterval(250); + tracker_status_poll_timer.start(); } @@ -1143,6 +1247,22 @@ void neuralnet_dialog::unregister_tracker() } +void neuralnet_dialog::status_poll() +{ + QString status; + if (!tracker) + { + status = tr("Tracker Offline"); + } + else + { + auto [ res, fps, inference_time ] = tracker->stats(); + status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(int(inference_time)); + } + ui.resolution_display->setText(status); +} + + void neuralnet_dialog::trans_calib_step() { if (tracker) |