summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tracker-neuralnet/ftnoir_tracker_neuralnet.cpp')
-rw-r--r--tracker-neuralnet/ftnoir_tracker_neuralnet.cpp990
1 files changed, 708 insertions, 282 deletions
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
index 3687a6cd..62209978 100644
--- a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
+++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
@@ -15,6 +15,7 @@
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include "compat/timer.hpp"
+#include "compat/check-visible.hpp"
#include <omp.h>
#ifdef _MSC_VER
@@ -29,20 +30,22 @@
#include <cmath>
#include <algorithm>
#include <chrono>
+#include <string>
+#include <stdexcept>
+
// Some demo code for onnx
// https://github.com/microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp
// https://github.com/leimao/ONNX-Runtime-Inference/blob/main/src/inference.cpp
-namespace
+namespace neuralnet_tracker_ns
{
+
using numeric_types::vec3;
using numeric_types::vec2;
using numeric_types::mat33;
-
-// Minimal difference if at all going from 1 to 2 threads.
-static constexpr int num_threads = 1;
+using quat = std::array<numeric_types::f,4>;
#if _MSC_VER
@@ -52,12 +55,52 @@ std::string convert(const QString &s) { return s.toStdString(); }
#endif
+template<class F>
+struct OnScopeExit
+{
+ explicit OnScopeExit(F&& f) : f_{ f } {}
+ ~OnScopeExit() noexcept
+ {
+ f_();
+ }
+ F f_;
+};
+
+
float sigmoid(float x)
{
return 1.f/(1.f + std::exp(-x));
}
+cv::Rect make_crop_rect_for_aspect(const cv::Size &size, int aspect_w, int aspect_h)
+{
+ auto [w, h] = size;
+ if ( w*aspect_h > aspect_w*h )
+ {
+ // Image is too wide
+ const int new_w = (aspect_w*h)/aspect_h;
+ return cv::Rect((w - new_w)/2, 0, new_w, h);
+ }
+ else
+ {
+ const int new_h = (aspect_h*w)/aspect_w;
+ return cv::Rect(0, (h - new_h)/2, w, new_h);
+ }
+}
+
+cv::Rect make_crop_rect_multiple_of(const cv::Size &size, int multiple)
+{
+ const int new_w = (size.width / multiple) * multiple;
+ const int new_h = (size.height / multiple) * multiple;
+ return cv::Rect(
+ (size.width-new_w)/2,
+ (size.height-new_h)/2,
+ new_w,
+ new_h
+ );
+}
+
template<class T>
cv::Rect_<T> squarize(const cv::Rect_<T> &r)
{
@@ -67,6 +110,41 @@ cv::Rect_<T> squarize(const cv::Rect_<T> &r)
}
+template<class T>
+cv::Point_<T> as_point(const cv::Size_<T>& s)
+{
+ return { s.width, s.height };
+}
+
+
+template<class T>
+cv::Size_<T> as_size(const cv::Point_<T>& p)
+{
+ return { p.x, p.y };
+}
+
+
+template<class T>
+cv::Rect_<T> expand(const cv::Rect_<T>& r, T factor)
+{
+ // xnew = l+.5*w - w*f*0.5 = l + .5*(w - new_w)
+ const cv::Size_<T> new_size = { r.width * factor, r.height * factor };
+ const cv::Point_<T> new_tl = r.tl() + (as_point(r.size()) - as_point(new_size)) / T(2);
+ return cv::Rect_<T>(new_tl, new_size);
+}
+
+
+template<class T>
+cv::Rect_<T> ewa_filter(const cv::Rect_<T>& last, const cv::Rect_<T>& current, T alpha)
+{
+ const auto last_center = T(0.5) * (last.tl() + last.br());
+ const auto cur_center = T(0.5) * (current.tl() + current.br());
+ const cv::Point_<T> new_size = as_point(last.size()) + alpha * (as_point(current.size()) - as_point(last.size()));
+ const cv::Point_<T> new_center = last_center + alpha * (cur_center - last_center);
+ return cv::Rect_<T>(new_center - T(0.5) * new_size, as_size(new_size));
+}
+
+
cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w)
{
auto unnorm = [](float x) -> float { return 0.5*(x+1); };
@@ -105,10 +183,9 @@ mat33 rotation_from_two_vectors(const vec3 &a, const vec3 &b)
}
-/* Computes correction due to head being off screen center.
- x, y: In screen space, i.e. in [-1,1]
- focal_length_x: In screen space
-*/
+// Computes correction due to head being off screen center.
+// x, y: In screen space, i.e. in [-1,1]
+// focal_length_x: In screen space
mat33 compute_rotation_correction(const cv::Point2f &p, float focal_length_x)
{
return rotation_from_two_vectors(
@@ -137,6 +214,66 @@ mat33 quaternion_to_mat33(const std::array<float,4> quat)
}
+vec3 rotate_vec(const quat& q, const vec3& p)
+{
+ const float qw = q[0];
+ const float qi = q[1];
+ const float qj = q[2];
+ const float qk = q[3];
+ const float pi = p[0];
+ const float pj = p[1];
+ const float pk = p[2];
+ const quat tmp{
+ - qi*pi - qj*pj - qk*pk,
+ qw*pi + qj*pk - qk*pj,
+ qw*pj - qi*pk + qk*pi,
+ qw*pk + qi*pj - qj*pi
+ };
+ const vec3 out {
+ -tmp[0]*qi + tmp[1]*qw - tmp[2]*qk + tmp[3]*qj,
+ -tmp[0]*qj + tmp[1]*qk + tmp[2]*qw - tmp[3]*qi,
+ -tmp[0]*qk - tmp[1]*qj + tmp[2]*qi + tmp[3]*qw
+ };
+ return out;
+}
+
+
+vec3 image_to_world(float x, float y, float size, float reference_size_in_mm, const cv::Size2i& image_size, const CamIntrinsics& intrinsics)
+{
+ // Compute the location the network outputs in 3d space.
+ const float xpos = -(intrinsics.focal_length_w * image_size.width * 0.5f) / size * reference_size_in_mm;
+ const float zpos = (x / image_size.width * 2.f - 1.f) * xpos / intrinsics.focal_length_w;
+ const float ypos = (y / image_size.height * 2.f - 1.f) * xpos / intrinsics.focal_length_h;
+ return {xpos, ypos, zpos};
+}
+
+
+vec2 world_to_image(const vec3& pos, const cv::Size2i& image_size, const CamIntrinsics& intrinsics)
+{
+ const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w;
+ const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h;
+ const float x = (xscr+1.)*0.5f*image_size.width;
+ const float y = (yscr+1.)*0.5f*image_size.height;
+ return {x, y};
+}
+
+
+quat image_to_world(quat q)
+{
+ std::swap(q[1], q[3]);
+ q[1] = -q[1];
+ q[2] = -q[2];
+ q[3] = -q[3];
+ return q;
+}
+
+quat world_to_image(quat q)
+{
+ // It's its own inverse.
+ return image_to_world(q);
+}
+
+// Intersection over union. A value between 0 and 1 which measures the match between the bounding boxes.
template<class T>
T iou(const cv::Rect_<T> &a, const cv::Rect_<T> &b)
{
@@ -144,12 +281,30 @@ T iou(const cv::Rect_<T> &a, const cv::Rect_<T> &b)
return double{i.area()} / (a.area()+b.area()-i.area());
}
-
-} // namespace
+// Returns width and height of the input tensor, or throws.
+// Expects the model to take one tensor as input that must
+// have the shape B x C x H x W, where B=C=1.
+cv::Size get_input_image_shape(const Ort::Session &session)
+{
+ if (session.GetInputCount() < 1)
+ throw std::invalid_argument("Model must take at least one input tensor");
+ const std::vector<std::int64_t> shape =
+ session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
+ if (shape.size() != 4)
+ throw std::invalid_argument("Model takes the input tensor in the wrong shape");
+ return { static_cast<int>(shape[3]), static_cast<int>(shape[2]) };
+}
-namespace neuralnet_tracker_ns
+Ort::Value create_tensor(const Ort::TypeInfo& info, Ort::Allocator& alloc)
{
+ const auto shape = info.GetTensorTypeAndShapeInfo().GetShape();
+ auto t = Ort::Value::CreateTensor<float>(
+ alloc, shape.data(), shape.size());
+ memset(t.GetTensorMutableData<float>(), 0, sizeof(float)*info.GetTensorTypeAndShapeInfo().GetElementCount());
+ return t;
+}
+
int enum_to_fps(int value)
@@ -165,52 +320,49 @@ int enum_to_fps(int value)
Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
- session{std::move(session)},
- scaled_frame(input_img_height, input_img_width, CV_8U),
- input_mat(input_img_height, input_img_width, CV_32F)
+ session_{std::move(session)},
+ scaled_frame_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_8U),
+ input_mat_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_32F)
{
// Only works when input_mat does not reallocated memory ...which it should not.
// Non-owning memory reference to input_mat?
// Note: shape = (bach x channels x h x w)
- const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
- input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);
+ const std::int64_t input_shape[4] = { 1, 1, INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH };
+ input_val_ = Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4);
const std::int64_t output_shape[2] = { 1, 5 };
- output_val = Ort::Value::CreateTensor<float>(allocator_info, results.data(), results.size(), output_shape, 2);
+ output_val_ = Ort::Value::CreateTensor<float>(allocator_info, results_.data(), results_.size(), output_shape, 2);
}
std::pair<float, cv::Rect2f> Localizer::run(
const cv::Mat &frame)
{
- auto p = input_mat.ptr(0);
+ auto p = input_mat_.ptr(0);
- cv::resize(frame, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);
- scaled_frame.convertTo(input_mat, CV_32F, 1./255., -0.5);
+ cv::resize(frame, scaled_frame_, { INPUT_IMG_WIDTH, INPUT_IMG_HEIGHT }, 0, 0, cv::INTER_AREA);
+ scaled_frame_.convertTo(input_mat_, CV_32F, 1./255., -0.5);
- assert (input_mat.ptr(0) == p);
- assert (!input_mat.empty() && input_mat.isContinuous());
- assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);
+ assert (input_mat_.ptr(0) == p);
+ assert (!input_mat_.empty() && input_mat_.isContinuous());
+ assert (input_mat_.cols == INPUT_IMG_WIDTH && input_mat_.rows == INPUT_IMG_HEIGHT);
const char* input_names[] = {"x"};
const char* output_names[] = {"logit_box"};
Timer t; t.start();
- const auto nt = omp_get_num_threads();
- omp_set_num_threads(num_threads);
- session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, &output_val, 1);
- omp_set_num_threads(nt);
+ session_.Run(Ort::RunOptions{nullptr}, input_names, &input_val_, 1, output_names, &output_val_, 1);
- last_inference_time = t.elapsed_ms();
+ last_inference_time_ = t.elapsed_ms();
const cv::Rect2f roi = unnormalize(cv::Rect2f{
- results[1],
- results[2],
- results[3]-results[1], // Width
- results[4]-results[2] // Height
+ results_[1],
+ results_[2],
+ results_[3]-results_[1], // Width
+ results_[4]-results_[2] // Height
}, frame.rows, frame.cols);
- const float score = sigmoid(results[0]);
+ const float score = sigmoid(results_[0]);
return { score, roi };
}
@@ -218,37 +370,91 @@ std::pair<float, cv::Rect2f> Localizer::run(
double Localizer::last_inference_time_millis() const
{
- return last_inference_time;
+ return last_inference_time_;
}
-PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
- session{std::move(session)},
- scaled_frame(input_img_height, input_img_width, CV_8U),
- input_mat(input_img_height, input_img_width, CV_32F)
+PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&_session)
+ : model_version_{_session.GetModelMetadata().GetVersion()}
+ , session_{std::move(_session)}
+ , allocator_{session_, allocator_info}
{
+ using namespace std::literals::string_literals;
+
+ if (session_.GetOutputCount() < 2)
+ throw std::runtime_error("Invalid Model: must have at least two outputs");
+
+ // WARNING UB .. but still ...
+ // If the model was saved without meta data, it seems the version field is uninitialized.
+ // In that case reading from it is UB. However, we will just get same arbitrary number
+ // which is hopefully different from the numbers used by models where the version is set.
+ // I.e., this is what happended in practice so far.
+ if (model_version_ != 2)
+ model_version_ = 1;
+
+ const cv::Size input_image_shape = get_input_image_shape(session_);
+
+ scaled_frame_ = cv::Mat(input_image_shape, CV_8U, cv::Scalar(0));
+ input_mat_ = cv::Mat(input_image_shape, CV_32F, cv::Scalar(0.f));
+
{
- const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
- input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);
+ const std::int64_t input_shape[4] = { 1, 1, input_image_shape.height, input_image_shape.width };
+ input_val_.push_back(
+ Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4));
}
{
const std::int64_t output_shape[2] = { 1, 3 };
- output_val[0] = Ort::Value::CreateTensor<float>(
- allocator_info, &output_coord[0], output_coord.rows, output_shape, 2);
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, &output_coord_[0], output_coord_.rows, output_shape, 2));
}
{
const std::int64_t output_shape[2] = { 1, 4 };
- output_val[1] = Ort::Value::CreateTensor<float>(
- allocator_info, &output_quat[0], output_quat.rows, output_shape, 2);
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, &output_quat_[0], output_quat_.rows, output_shape, 2));
}
+ size_t num_regular_outputs = 2;
+
+ if (session_.GetOutputCount() >= 3 && "box"s == session_.GetOutputName(2, allocator_))
{
const std::int64_t output_shape[2] = { 1, 4 };
- output_val[2] = Ort::Value::CreateTensor<float>(
- allocator_info, &output_box[0], output_box.rows, output_shape, 2);
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, &output_box_[0], output_box_.rows, output_shape, 2));
+ ++num_regular_outputs;
+ qDebug() << "Note: Legacy model output for face ROI is currently ignored";
+ }
+
+ num_recurrent_states_ = session_.GetInputCount()-1;
+ if (session_.GetOutputCount()-num_regular_outputs != num_recurrent_states_)
+ throw std::runtime_error("Invalid Model: After regular inputs and outputs the model must have equal number of inputs and outputs for tensors holding hidden states of recurrent layers.");
+
+ // Create tensors for recurrent state
+ for (size_t i = 0; i < num_recurrent_states_; ++i)
+ {
+ const auto& input_info = session_.GetInputTypeInfo(1+i);
+ const auto& output_info = session_.GetOutputTypeInfo(num_regular_outputs+i);
+ if (input_info.GetTensorTypeAndShapeInfo().GetShape() !=
+ output_info.GetTensorTypeAndShapeInfo().GetShape())
+ throw std::runtime_error("Invalid Model: Tensors for recurrent hidden states should have same shape on intput and output");
+ input_val_.push_back(create_tensor(input_info, allocator_));
+ output_val_.push_back(create_tensor(output_info, allocator_));
+ }
+
+ for (size_t i = 0; i < session_.GetInputCount(); ++i)
+ {
+ input_names_.push_back(session_.GetInputName(i, allocator_));
+ }
+ for (size_t i = 0; i < session_.GetOutputCount(); ++i)
+ {
+ output_names_.push_back(session_.GetOutputName(i, allocator_));
}
+
+ qDebug() << "Model inputs: " << session_.GetInputCount() << ", outputs: " << session_.GetOutputCount() << ", recurrent states: " << num_recurrent_states_;
+
+ assert (input_names_.size() == input_val_.size());
+ assert (output_names_.size() == output_val_.size());
}
@@ -259,9 +465,9 @@ int PoseEstimator::find_input_intensity_90_pct_quantile() const
float range[] = { 0, 256 };
const float* ranges[] = { range };
cv::Mat hist;
- cv::calcHist(&scaled_frame, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
+ cv::calcHist(&scaled_frame_, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
int gray_level = 0;
- const int num_pixels_quantile = scaled_frame.total()*0.9f;
+ const int num_pixels_quantile = scaled_frame_.total()*0.9f;
int num_pixels_accum = 0;
for (int i=0; i<hist_size[0]; ++i)
{
@@ -280,7 +486,7 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
const cv::Mat &frame, const cv::Rect &box)
{
cv::Mat cropped;
-
+
const int patch_size = std::max(box.width, box.height)*1.05;
const cv::Point2f patch_center = {
std::clamp<float>(box.x + 0.5f*box.width, 0.f, frame.cols),
@@ -288,64 +494,89 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
};
cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped);
- // Will get failure if patch_center is outside image boundaries.
+ // Will get failure if patch_center is outside image boundariesettings.
// Have to catch this case.
if (cropped.rows != patch_size || cropped.cols != patch_size)
return {};
-
- auto p = input_mat.ptr(0);
- cv::resize(cropped, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);
+ auto p = input_mat_.ptr(0);
+
+ cv::resize(cropped, scaled_frame_, scaled_frame_.size(), 0, 0, cv::INTER_AREA);
// Automatic brightness amplification.
const int brightness = find_input_intensity_90_pct_quantile();
const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255;
const double beta = -0.5;
- scaled_frame.convertTo(input_mat, CV_32F, alpha, beta);
+ scaled_frame_.convertTo(input_mat_, CV_32F, alpha, beta);
- assert (input_mat.ptr(0) == p);
- assert (!input_mat.empty() && input_mat.isContinuous());
- assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);
+ assert (input_mat_.ptr(0) == p);
+ assert (!input_mat_.empty() && input_mat_.isContinuous());
- const char* input_names[] = {"x"};
- const char* output_names[] = {"pos_size", "quat", "box"};
Timer t; t.start();
- const auto nt = omp_get_num_threads();
- omp_set_num_threads(num_threads);
- session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, output_val, 3);
- omp_set_num_threads(nt);
+ try
+ {
+ session_.Run(
+ Ort::RunOptions{ nullptr },
+ input_names_.data(),
+ input_val_.data(),
+ input_val_.size(),
+ output_names_.data(),
+ output_val_.data(),
+ output_val_.size());
+ }
+ catch (const Ort::Exception &e)
+ {
+ qDebug() << "Failed to run the model: " << e.what();
+ return {};
+ }
+
+ for (size_t i = 0; i<num_recurrent_states_; ++i)
+ {
+ // Next step, the current output becomes the input.
+ // Thus we realize the recurrent connection.
+ // Only swaps the internal pointers. There is no copy of data.
+ std::swap(
+ output_val_[output_val_.size()-num_recurrent_states_+i],
+ input_val_[input_val_.size()-num_recurrent_states_+i]);
+ }
- // FIXME: Execution time fluctuates wildly. 19 to 26 ms. Why???
+ // FIXME: Execution time fluctuates wildly. 19 to 26 msec. Why?
// The instructions are always the same. Maybe a memory allocation
// issue. The ONNX api suggests that tensor are allocated in an
// arena. Does that matter? Maybe the issue is something else?
- last_inference_time = t.elapsed_ms();
+ last_inference_time_ = t.elapsed_ms();
// Perform coordinate transformation.
// From patch-local normalized in [-1,1] to
- // frame unnormalized pixel coordinates.
+ // frame unnormalized pixel coordinatesettings.
const cv::Point2f center = patch_center +
- (0.5f*patch_size)*cv::Point2f{output_coord[0], output_coord[1]};
+ (0.5f*patch_size)*cv::Point2f{output_coord_[0], output_coord_[1]};
- const float size = patch_size*0.5f*output_coord[2];
+ const float size = patch_size*0.5f*output_coord_[2];
// Following Eigen which uses quat components in the order w, x, y, z.
- const std::array<float,4> rotation = {
- output_quat[3],
- output_quat[0],
- output_quat[1],
- output_quat[2] };
+ quat rotation = {
+ output_quat_[3],
+ output_quat_[0],
+ output_quat_[1],
+ output_quat_[2] };
+
+ if (model_version_ < 2)
+ {
+ // Due to a change in coordinate conventions
+ rotation = world_to_image(rotation);
+ }
const cv::Rect2f outbox = {
- patch_center.x + (0.5f*patch_size)*output_box[0],
- patch_center.y + (0.5f*patch_size)*output_box[1],
- 0.5f*patch_size*(output_box[2]-output_box[0]),
- 0.5f*patch_size*(output_box[3]-output_box[1])
+ patch_center.x + (0.5f*patch_size)*output_box_[0],
+ patch_center.y + (0.5f*patch_size)*output_box_[1],
+ 0.5f*patch_size*(output_box_[2]-output_box_[0]),
+ 0.5f*patch_size*(output_box_[3]-output_box_[1])
};
return std::optional<Face>({
@@ -356,66 +587,102 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
cv::Mat PoseEstimator::last_network_input() const
{
+ assert(!input_mat_.empty());
cv::Mat ret;
- if (!input_mat.empty())
- {
- input_mat.convertTo(ret, CV_8U, 255., 127.);
- cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
- }
+ input_mat_.convertTo(ret, CV_8U, 255., 127.);
+ cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
return ret;
}
double PoseEstimator::last_inference_time_millis() const
{
- return last_inference_time;
+ return last_inference_time_;
}
-bool neuralnet_tracker::detect()
+bool NeuralNetTracker::detect()
{
- // Note: BGR colors!
- if (!last_localizer_roi || !last_roi ||
- iou(*last_localizer_roi,*last_roi)<0.25)
+ double inference_time = 0.;
+
+ OnScopeExit update_inference_time{ [&]() {
+
+ QMutexLocker lck{ &stats_mtx_ };
+ inference_time_ = inference_time;
+ } };
+
+ // If there is no past ROI from the localizer or if the match of its output
+ // with the current ROI is too poor we have to run it again. This causes a
+ // latency spike of maybe an additional 50%. But it only occurs when the user
+ // moves his head far enough - or when the tracking ist lost ...
+ if (!last_localizer_roi_ || !last_roi_ ||
+ iou(*last_localizer_roi_,*last_roi_)<0.25)
{
- auto [p, rect] = localizer->run(grayscale);
- last_inference_time += localizer->last_inference_time_millis();
- if (p > 0.5 || rect.height < 5 || rect.width < 5)
+ auto [p, rect] = localizer_->run(grayscale_);
+ inference_time += localizer_->last_inference_time_millis();
+
+ if (last_roi_ && iou(rect,*last_roi_)>=0.25 && p > 0.5)
+ {
+ // The new ROI matches the result from tracking, so the user is
+ // still there and to not disturb recurrent models, we only update
+ // ...
+ last_localizer_roi_ = rect;
+ }
+ else if (p > 0.5 && rect.height > 32 && rect.width > 32)
{
- last_localizer_roi = rect;
- last_roi = rect;
+ // Tracking probably got lost since the ROI's don't match, but the
+ // localizer still finds a face, so we use the ROI from the localizer
+ last_localizer_roi_ = rect;
+ last_roi_ = rect;
}
else
{
- last_roi.reset();
- last_localizer_roi.reset();
+ // Tracking lost and no localization result. The user probably can't be seen.
+ last_roi_.reset();
+ last_localizer_roi_.reset();
}
}
- if (!last_roi)
+ if (!last_roi_)
{
- draw_gizmos(frame, {}, {});
+ draw_gizmos({}, {});
return false;
}
- auto face = poseestimator->run(grayscale, *last_roi);
- last_inference_time += poseestimator->last_inference_time_millis();
-
+ auto face = poseestimator_->run(grayscale_, *last_roi_);
+ inference_time += poseestimator_->last_inference_time_millis();
+
if (!face)
{
- last_roi.reset();
- draw_gizmos(frame, *face, {});
+ last_roi_.reset();
+ draw_gizmos(*face, {});
return false;
}
- last_roi = face->box;
+ {
+ // Here: compute ROI from head size estimate. This helps make the size prediction more
+ // invariant to mouth opening. The tracking can be lost more often at extreme
+ // rotations, depending on the implementation details. The code down here has
+ // been tweaked so that it works pretty well.
+ // In old behaviour ROI is taken from the model outputs
+ const vec3 offset = rotate_vec(face->rotation, vec3{0.f, 0.1f*face->size, face->size*0.3f});
+ const float halfsize = face->size/float(settings_.roi_zoom);
+ face->box = cv::Rect2f(
+ face->center.x + offset[0] - halfsize,
+ face->center.y + offset[1] - halfsize,
+ halfsize*2.f,
+ halfsize*2.f
+ );
+ }
+
+ last_roi_ = ewa_filter(*last_roi_, face->box, float(settings_.roi_filter_alpha));
Affine pose = compute_pose(*face);
- draw_gizmos(frame, *face, pose);
+ draw_gizmos(*face, pose);
{
- QMutexLocker lck(&mtx);
+ QMutexLocker lck(&mtx_);
this->pose_ = pose;
}
@@ -423,13 +690,35 @@ bool neuralnet_tracker::detect()
}
-Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const
+void NeuralNetTracker::draw_gizmos(
+ const std::optional<PoseEstimator::Face> &face,
+ const Affine& pose)
{
+ if (!is_visible_)
+ return;
+
+ preview_.draw_gizmos(face, pose, last_roi_, last_localizer_roi_, world_to_image(pose.t, grayscale_.size(), intrinsics_));
+
+ if (settings_.show_network_input)
+ {
+ cv::Mat netinput = poseestimator_->last_network_input();
+ preview_.overlay_netinput(netinput);
+ }
+
+ //preview_.draw_fps(fps, last_inference_time);
+}
+
+
+Affine NeuralNetTracker::compute_pose(const PoseEstimator::Face &face) const
+{
+ // Compute the location the network outputs in 3d space.
+
const mat33 rot_correction = compute_rotation_correction(
- normalize(face.center, frame.rows, frame.cols),
- intrinsics.focal_length_w);
+ normalize(face.center, grayscale_.rows, grayscale_.cols),
+ intrinsics_.focal_length_w);
- const mat33 m = rot_correction * quaternion_to_mat33(face.rotation);
+ const mat33 m = rot_correction * quaternion_to_mat33(
+ image_to_world(face.rotation));
/*
@@ -444,44 +733,68 @@ Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const
------------------------
*/
- // Compute the location the network outputs in 3d space.
- const vec3 face_world_pos = image_to_world(face.center.x, face.center.y, face.size, head_size_mm);
+ const vec3 face_world_pos = image_to_world(
+ face.center.x, face.center.y, face.size, HEAD_SIZE_MM,
+ grayscale_.size(),
+ intrinsics_);
// But this is in general not the location of the rotation joint in the neck.
// So we need an extra offset. Which we determine by solving
// z,y,z-pos = head_joint_loc + R_face * offset
-
const vec3 pos = face_world_pos
+ m * vec3{
- static_cast<float>(s.offset_fwd),
- static_cast<float>(s.offset_up),
- static_cast<float>(s.offset_right)};
+ static_cast<float>(settings_.offset_fwd),
+ static_cast<float>(settings_.offset_up),
+ static_cast<float>(settings_.offset_right)};
return { m, pos };
}
-void neuralnet_tracker::draw_gizmos(
- cv::Mat frame,
+void Preview::init(const cv_video_widget& widget)
+{
+ auto [w,h] = widget.preview_size();
+ preview_size_ = { w, h };
+}
+
+
+void Preview::copy_video_frame(const cv::Mat& frame)
+{
+ cv::Rect roi = make_crop_rect_for_aspect(frame.size(), preview_size_.width, preview_size_.height);
+
+ cv::resize(frame(roi), preview_image_, preview_size_, 0, 0, cv::INTER_NEAREST);
+
+ offset_ = { (float)-roi.x, (float)-roi.y };
+ scale_ = float(preview_image_.cols) / float(roi.width);
+}
+
+
+void Preview::draw_gizmos(
const std::optional<PoseEstimator::Face> &face,
- const Affine& pose) const
+ const Affine& pose,
+ const std::optional<cv::Rect2f>& last_roi,
+ const std::optional<cv::Rect2f>& last_localizer_roi,
+ const cv::Point2f& neckjoint_position)
{
+ if (preview_image_.empty())
+ return;
+
if (last_roi)
{
const int col = 255;
- cv::rectangle(frame, *last_roi, cv::Scalar(0, col, 0), /*thickness=*/1);
+ cv::rectangle(preview_image_, transform(*last_roi), cv::Scalar(0, col, 0), /*thickness=*/1);
}
if (last_localizer_roi)
{
const int col = 255;
- cv::rectangle(frame, *last_localizer_roi, cv::Scalar(col, 0, 255-col), /*thickness=*/1);
+ cv::rectangle(preview_image_, transform(*last_localizer_roi), cv::Scalar(col, 0, 255-col), /*thickness=*/1);
}
if (face)
{
if (face->size>=1.f)
- cv::circle(frame, static_cast<cv::Point>(face->center), int(face->size), cv::Scalar(255,255,255), 2);
- cv::circle(frame, static_cast<cv::Point>(face->center), 3, cv::Scalar(255,255,255), -1);
+ cv::circle(preview_image_, static_cast<cv::Point>(transform(face->center)), int(transform(face->size)), cv::Scalar(255,255,255), 2);
+ cv::circle(preview_image_, static_cast<cv::Point>(transform(face->center)), 3, cv::Scalar(255,255,255), -1);
auto draw_coord_line = [&](int i, const cv::Scalar& color)
{
@@ -489,43 +802,67 @@ void neuralnet_tracker::draw_gizmos(
const float vy = -pose.R(1,i);
static constexpr float len = 100.f;
cv::Point q = face->center + len*cv::Point2f{vx, vy};
- cv::line(frame, static_cast<cv::Point>(face->center), static_cast<cv::Point>(q), color, 2);
+ cv::line(preview_image_, static_cast<cv::Point>(transform(face->center)), static_cast<cv::Point>(transform(q)), color, 2);
};
draw_coord_line(0, {0, 0, 255});
draw_coord_line(1, {0, 255, 0});
draw_coord_line(2, {255, 0, 0});
// Draw the computed joint position
- auto xy = world_to_image(pose.t);
- cv::circle(frame, cv::Point(xy[0],xy[1]), 5, cv::Scalar(0,0,255), -1);
+ auto xy = transform(neckjoint_position);
+ cv::circle(preview_image_, cv::Point(xy.x,xy.y), 5, cv::Scalar(0,0,255), -1);
}
+}
- if (s.show_network_input)
- {
- cv::Mat netinput = poseestimator->last_network_input();
- if (!netinput.empty())
- {
- const int w = std::min(netinput.cols, frame.cols);
- const int h = std::min(netinput.rows, frame.rows);
- cv::Rect roi(0, 0, w, h);
- netinput(roi).copyTo(frame(roi));
- }
- }
+void Preview::overlay_netinput(const cv::Mat& netinput)
+{
+ if (netinput.empty())
+ return;
+
+ const int w = std::min(netinput.cols, preview_image_.cols);
+ const int h = std::min(netinput.rows, preview_image_.rows);
+ cv::Rect roi(0, 0, w, h);
+ netinput(roi).copyTo(preview_image_(roi));
+}
+void Preview::draw_fps(double fps, double last_inference_time)
+{
char buf[128];
::snprintf(buf, sizeof(buf), "%d Hz, pose inference: %d ms", std::clamp(int(fps), 0, 9999), int(last_inference_time));
- cv::putText(frame, buf, cv::Point(10, frame.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1);
+ cv::putText(preview_image_, buf, cv::Point(10, preview_image_.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1);
}
-neuralnet_tracker::neuralnet_tracker()
+void Preview::copy_to_widget(cv_video_widget& widget)
+{
+ if (preview_image_.rows > 0)
+ widget.update_image(preview_image_);
+}
+
+
+cv::Rect2f Preview::transform(const cv::Rect2f& r) const
+{
+ return { (r.x - offset_.x)*scale_, (r.y - offset_.y)*scale_, r.width*scale_, r.height*scale_ };
+}
+
+cv::Point2f Preview::transform(const cv::Point2f& p) const
+{
+ return { (p.x - offset_.x)*scale_ , (p.y - offset_.y)*scale_ };
+}
+
+float Preview::transform(float s) const
+{
+ return s * scale_;
+}
+
+
+NeuralNetTracker::NeuralNetTracker()
{
opencv_init();
- cv::setNumThreads(num_threads);
}
-neuralnet_tracker::~neuralnet_tracker()
+NeuralNetTracker::~NeuralNetTracker()
{
requestInterruption();
wait();
@@ -534,21 +871,22 @@ neuralnet_tracker::~neuralnet_tracker()
}
-module_status neuralnet_tracker::start_tracker(QFrame* videoframe)
+module_status NeuralNetTracker::start_tracker(QFrame* videoframe)
{
videoframe->show();
- videoWidget = std::make_unique<cv_video_widget>(videoframe);
- layout = std::make_unique<QHBoxLayout>();
- layout->setContentsMargins(0, 0, 0, 0);
- layout->addWidget(&*videoWidget);
- videoframe->setLayout(&*layout);
- videoWidget->show();
+ video_widget_ = std::make_unique<cv_video_widget>(videoframe);
+ layout_ = std::make_unique<QHBoxLayout>();
+ layout_->setContentsMargins(0, 0, 0, 0);
+ layout_->addWidget(&*video_widget_);
+ videoframe->setLayout(&*layout_);
+ video_widget_->show();
+ num_threads_ = settings_.num_threads;
start();
return status_ok();
}
-bool neuralnet_tracker::load_and_initialize_model()
+bool NeuralNetTracker::load_and_initialize_model()
{
const QString localizer_model_path_enc =
OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx";
@@ -557,26 +895,25 @@ bool neuralnet_tracker::load_and_initialize_model()
try
{
- env = Ort::Env{
+ env_ = Ort::Env{
OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR,
"tracker-neuralnet"
};
auto opts = Ort::SessionOptions{};
// Do thread settings here do anything?
// There is a warning which says to control number of threads via
- // openmp settings. Which is what we do. omp_set_num_threads directly
- // before running the inference pass.
- opts.SetIntraOpNumThreads(num_threads);
- opts.SetInterOpNumThreads(num_threads);
- allocator_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
-
- localizer.emplace(
- allocator_info,
- Ort::Session{env, convert(localizer_model_path_enc).c_str(), opts});
-
- poseestimator.emplace(
- allocator_info,
- Ort::Session{env, convert(poseestimator_model_path_enc).c_str(), opts});
+ // openmp settings. Which is what we do.
+ opts.SetIntraOpNumThreads(num_threads_);
+ opts.SetInterOpNumThreads(1);
+ allocator_info_ = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
+
+ localizer_.emplace(
+ allocator_info_,
+ Ort::Session{env_, convert(localizer_model_path_enc).c_str(), opts});
+
+ poseestimator_.emplace(
+ allocator_info_,
+ Ort::Session{env_, convert(poseestimator_model_path_enc).c_str(), opts});
}
catch (const Ort::Exception &e)
{
@@ -588,74 +925,87 @@ bool neuralnet_tracker::load_and_initialize_model()
}
-bool neuralnet_tracker::open_camera()
+bool NeuralNetTracker::open_camera()
{
- int fps = enum_to_fps(s.force_fps);
+ int rint = std::clamp(*settings_.resolution, 0, (int)std::size(resolution_choices)-1);
+ resolution_tuple res = resolution_choices[rint];
+ int fps = enum_to_fps(settings_.force_fps);
- QMutexLocker l(&camera_mtx);
+ QMutexLocker l(&camera_mtx_);
- camera = video::make_camera(s.camera_name);
+ camera_ = video::make_camera(settings_.camera_name);
- if (!camera)
+ if (!camera_)
return false;
video::impl::camera::info args {};
- args.width = 320;
- args.height = 240;
-
+ if (res.width)
+ {
+ args.width = res.width;
+ args.height = res.height;
+ }
if (fps)
args.fps = fps;
- args.use_mjpeg = s.use_mjpeg;
+ args.use_mjpeg = settings_.use_mjpeg;
- if (!camera->start(args))
+ if (!camera_->start(args))
{
qDebug() << "neuralnet tracker: can't open camera";
return false;
}
+
return true;
}
-void neuralnet_tracker::set_intrinsics()
+void NeuralNetTracker::set_intrinsics()
{
- const int w = grayscale.cols, h = grayscale.rows;
- const double diag_fov = s.fov * M_PI / 180.;
+ const int w = grayscale_.cols, h = grayscale_.rows;
+ const double diag_fov = settings_.fov * M_PI / 180.;
const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w));
const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h));
const double focal_length_w = 1. / tan(.5 * fov_w);
const double focal_length_h = 1. / tan(.5 * fov_h);
- intrinsics.fov_h = fov_h;
- intrinsics.fov_w = fov_w;
- intrinsics.focal_length_w = focal_length_w;
- intrinsics.focal_length_h = focal_length_h;
+ intrinsics_.fov_h = fov_h;
+ intrinsics_.fov_w = fov_w;
+ intrinsics_.focal_length_w = focal_length_w;
+ intrinsics_.focal_length_h = focal_length_h;
}
-vec3 neuralnet_tracker::image_to_world(float x, float y, float size, float real_size) const
+class GuardedThreadCountSwitch
{
- // Compute the location the network outputs in 3d space.
- const float xpos = -(intrinsics.focal_length_w * frame.cols * 0.5f) / size * real_size;
- const float zpos = (x / frame.cols * 2.f - 1.f) * xpos / intrinsics.focal_length_w;
- const float ypos = (y / frame.rows * 2.f - 1.f) * xpos / intrinsics.focal_length_h;
- return {xpos, ypos, zpos};
-}
+ int old_num_threads_cv_ = 1;
+ int old_num_threads_omp_ = 1;
+ public:
+ GuardedThreadCountSwitch(int num_threads)
+ {
+ old_num_threads_cv_ = cv::getNumThreads();
+ old_num_threads_omp_ = omp_get_num_threads();
+ omp_set_num_threads(num_threads);
+ cv::setNumThreads(num_threads);
+ }
+
+ ~GuardedThreadCountSwitch()
+ {
+ omp_set_num_threads(old_num_threads_omp_);
+ cv::setNumThreads(old_num_threads_cv_);
+ }
+
+ GuardedThreadCountSwitch(const GuardedThreadCountSwitch&) = delete;
+ GuardedThreadCountSwitch& operator=(const GuardedThreadCountSwitch&) = delete;
+};
-vec2 neuralnet_tracker::world_to_image(const vec3& pos) const
+void NeuralNetTracker::run()
{
- const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w;
- const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h;
- const float x = (xscr+1.)*0.5f*frame.cols;
- const float y = (yscr+1.)*0.5f*frame.rows;
- return {x, y};
-}
+ preview_.init(*video_widget_);
+ GuardedThreadCountSwitch switch_num_threads_to(num_threads_);
-void neuralnet_tracker::run()
-{
if (!open_camera())
return;
@@ -666,12 +1016,12 @@ void neuralnet_tracker::run()
while (!isInterruptionRequested())
{
- last_inference_time = 0;
+ is_visible_ = check_is_visible();
auto t = clk.now();
{
- QMutexLocker l(&camera_mtx);
+ QMutexLocker l(&camera_mtx_);
- auto [ img, res ] = camera->get_frame();
+ auto [ img, res ] = camera_->get_frame();
if (!res)
{
@@ -680,17 +1030,24 @@ void neuralnet_tracker::run()
continue;
}
- auto color = cv::Mat(img.height, img.width, CV_8UC(img.channels), (void*)img.data, img.stride);
- color.copyTo(frame);
+ {
+ QMutexLocker lck{&stats_mtx_};
+ resolution_ = { img.width, img.height };
+ }
+
+ auto color = prepare_input_image(img);
+
+ if (is_visible_)
+ preview_.copy_video_frame(color);
switch (img.channels)
{
case 1:
- grayscale.create(img.height, img.width, CV_8UC1);
- color.copyTo(grayscale);
+ grayscale_.create(img.height, img.width, CV_8UC1);
+ color.copyTo(grayscale_);
break;
case 3:
- cv::cvtColor(color, grayscale, cv::COLOR_BGR2GRAY);
+ cv::cvtColor(color, grayscale_, cv::COLOR_BGR2GRAY);
break;
default:
qDebug() << "Can't handle" << img.channels << "color channels";
@@ -702,8 +1059,8 @@ void neuralnet_tracker::run()
detect();
- if (frame.rows > 0)
- videoWidget->update_image(frame);
+ if (is_visible_)
+ preview_.copy_to_widget(*video_widget_);
update_fps(
std::chrono::duration_cast<std::chrono::milliseconds>(
@@ -712,23 +1069,50 @@ void neuralnet_tracker::run()
}
-void neuralnet_tracker::update_fps(double dt)
+cv::Mat NeuralNetTracker::prepare_input_image(const video::frame& frame)
{
- const double alpha = dt/(dt + RC);
+ auto img = cv::Mat(frame.height, frame.width, CV_8UC(frame.channels), (void*)frame.data, frame.stride);
+ // Crop if aspect ratio is not 4:3
+ if (img.rows*4 != img.cols*3)
+ {
+ img = img(make_crop_rect_for_aspect(img.size(), 4, 3));
+ }
+
+ img = img(make_crop_rect_multiple_of(img.size(), 4));
+
+ if (img.cols > 640)
+ {
+ cv::pyrDown(img, downsized_original_images_[0]);
+ img = downsized_original_images_[0];
+ }
+ if (img.cols > 640)
+ {
+ cv::pyrDown(img, downsized_original_images_[1]);
+ img = downsized_original_images_[1];
+ }
+
+ return img;
+}
+
+
+void NeuralNetTracker::update_fps(double dt)
+{
+ const double alpha = dt/(dt + RC);
if (dt > 1e-6)
{
- fps *= 1 - alpha;
- fps += alpha * 1./dt;
+ QMutexLocker lck{&stats_mtx_};
+ fps_ *= 1 - alpha;
+ fps_ += alpha * 1./dt;
}
}
-void neuralnet_tracker::data(double *data)
+void NeuralNetTracker::data(double *data)
{
Affine tmp = [&]()
{
- QMutexLocker lck(&mtx);
+ QMutexLocker lck(&mtx_);
return pose_;
}();
@@ -753,113 +1137,155 @@ void neuralnet_tracker::data(double *data)
}
-Affine neuralnet_tracker::pose()
+Affine NeuralNetTracker::pose()
{
- QMutexLocker lck(&mtx);
+ QMutexLocker lck(&mtx_);
return pose_;
}
+std::tuple<cv::Size,double, double> NeuralNetTracker::stats() const
+{
+ QMutexLocker lck(&stats_mtx_);
+ return { resolution_, fps_, inference_time_ };
+}
-void neuralnet_dialog::make_fps_combobox()
+void NeuralNetDialog::make_fps_combobox()
{
for (int k = 0; k < fps_MAX; k++)
{
const int hz = enum_to_fps(k);
const QString name = (hz == 0) ? tr("Default") : QString::number(hz);
- ui.cameraFPS->addItem(name, k);
+ ui_.cameraFPS->addItem(name, k);
+ }
+}
+
+void NeuralNetDialog::make_resolution_combobox()
+{
+ int k=0;
+ for (const auto [w, h] : resolution_choices)
+ {
+ const QString s = (w == 0)
+ ? tr("Default")
+ : QString::number(w) + " x " + QString::number(h);
+ ui_.resolution->addItem(s, k++);
}
}
-neuralnet_dialog::neuralnet_dialog() :
- trans_calib(1, 2)
+NeuralNetDialog::NeuralNetDialog() :
+ trans_calib_(1, 2)
{
- ui.setupUi(this);
+ ui_.setupUi(this);
make_fps_combobox();
- tie_setting(s.force_fps, ui.cameraFPS);
+ make_resolution_combobox();
for (const auto& str : video::camera_names())
- ui.cameraName->addItem(str);
-
- tie_setting(s.camera_name, ui.cameraName);
- tie_setting(s.fov, ui.cameraFOV);
- tie_setting(s.offset_fwd, ui.tx_spin);
- tie_setting(s.offset_up, ui.ty_spin);
- tie_setting(s.offset_right, ui.tz_spin);
- tie_setting(s.show_network_input, ui.showNetworkInput);
- tie_setting(s.use_mjpeg, ui.use_mjpeg);
-
- connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
- connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
- connect(ui.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));
-
- connect(&s.camera_name, value_::value_changed<QString>(), this, &neuralnet_dialog::update_camera_settings_state);
-
- update_camera_settings_state(s.camera_name);
-
- connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step);
- calib_timer.setInterval(35);
- connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
+ ui_.cameraName->addItem(str);
+
+ tie_setting(settings_.camera_name, ui_.cameraName);
+ tie_setting(settings_.fov, ui_.cameraFOV);
+ tie_setting(settings_.offset_fwd, ui_.tx_spin);
+ tie_setting(settings_.offset_up, ui_.ty_spin);
+ tie_setting(settings_.offset_right, ui_.tz_spin);
+ tie_setting(settings_.show_network_input, ui_.showNetworkInput);
+ tie_setting(settings_.roi_filter_alpha, ui_.roiFilterAlpha);
+ tie_setting(settings_.use_mjpeg, ui_.use_mjpeg);
+ tie_setting(settings_.roi_zoom, ui_.roiZoom);
+ tie_setting(settings_.num_threads, ui_.threadCount);
+ tie_setting(settings_.resolution, ui_.resolution);
+ tie_setting(settings_.force_fps, ui_.cameraFPS);
+
+ connect(ui_.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
+ connect(ui_.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
+ connect(ui_.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));
+
+ connect(&settings_.camera_name, value_::value_changed<QString>(), this, &NeuralNetDialog::update_camera_settings_state);
+
+ update_camera_settings_state(settings_.camera_name);
+
+ connect(&calib_timer_, &QTimer::timeout, this, &NeuralNetDialog::trans_calib_step);
+ calib_timer_.setInterval(35);
+ connect(ui_.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
+
+ connect(&tracker_status_poll_timer_, &QTimer::timeout, this, &NeuralNetDialog::status_poll);
+ tracker_status_poll_timer_.setInterval(250);
+ tracker_status_poll_timer_.start();
}
-void neuralnet_dialog::doOK()
+void NeuralNetDialog::doOK()
{
- s.b->save();
+ settings_.b->save();
close();
}
-void neuralnet_dialog::doCancel()
+void NeuralNetDialog::doCancel()
{
close();
}
-void neuralnet_dialog::camera_settings()
+void NeuralNetDialog::camera_settings()
{
- if (tracker)
+ if (tracker_)
{
- QMutexLocker l(&tracker->camera_mtx);
- (void)tracker->camera->show_dialog();
+ QMutexLocker l(&tracker_->camera_mtx_);
+ (void)tracker_->camera_->show_dialog();
}
else
- (void)video::show_dialog(s.camera_name);
+ (void)video::show_dialog(settings_.camera_name);
}
-void neuralnet_dialog::update_camera_settings_state(const QString& name)
+void NeuralNetDialog::update_camera_settings_state(const QString& name)
{
(void)name;
- ui.camera_settings->setEnabled(true);
+ ui_.camera_settings->setEnabled(true);
+}
+
+
+void NeuralNetDialog::register_tracker(ITracker * x)
+{
+ tracker_ = static_cast<NeuralNetTracker*>(x);
+ ui_.tcalib_button->setEnabled(true);
}
-void neuralnet_dialog::register_tracker(ITracker * x)
+void NeuralNetDialog::unregister_tracker()
{
- tracker = static_cast<neuralnet_tracker*>(x);
- ui.tcalib_button->setEnabled(true);
+ tracker_ = nullptr;
+ ui_.tcalib_button->setEnabled(false);
}
-void neuralnet_dialog::unregister_tracker()
+void NeuralNetDialog::status_poll()
{
- tracker = nullptr;
- ui.tcalib_button->setEnabled(false);
+ QString status;
+ if (!tracker_)
+ {
+ status = tr("Tracker Offline");
+ }
+ else
+ {
+ auto [ res, fps, inference_time ] = tracker_->stats();
+ status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(int(inference_time));
+ }
+ ui_.resolution_display->setText(status);
}
-void neuralnet_dialog::trans_calib_step()
+void NeuralNetDialog::trans_calib_step()
{
- if (tracker)
+ if (tracker_)
{
const Affine X_CM = [&]() {
- QMutexLocker l(&calibrator_mutex);
- return tracker->pose();
+ QMutexLocker l(&calibrator_mutex_);
+ return tracker_->pose();
}();
- trans_calib.update(X_CM.R, X_CM.t);
- auto [_, nsamples] = trans_calib.get_estimate();
+ trans_calib_.update(X_CM.R, X_CM.t);
+ auto [_, nsamples] = trans_calib_.get_estimate();
constexpr int min_yaw_samples = 15;
constexpr int min_pitch_samples = 12;
@@ -878,52 +1304,52 @@ void neuralnet_dialog::trans_calib_step()
const int nsamples_total = nsamples[0] + nsamples[1];
sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples);
}
- ui.sample_count_display->setText(sample_feedback);
+ ui_.sample_count_display->setText(sample_feedback);
}
else
startstop_trans_calib(false);
}
-void neuralnet_dialog::startstop_trans_calib(bool start)
+void NeuralNetDialog::startstop_trans_calib(bool start)
{
- QMutexLocker l(&calibrator_mutex);
+ QMutexLocker l(&calibrator_mutex_);
// FIXME: does not work ...
if (start)
{
qDebug() << "pt: starting translation calibration";
- calib_timer.start();
- trans_calib.reset();
- ui.sample_count_display->setText(QString());
+ calib_timer_.start();
+ trans_calib_.reset();
+ ui_.sample_count_display->setText(QString());
// Tracker must run with zero'ed offset for calibration.
- s.offset_fwd = 0;
- s.offset_up = 0;
- s.offset_right = 0;
+ settings_.offset_fwd = 0;
+ settings_.offset_up = 0;
+ settings_.offset_right = 0;
}
else
{
- calib_timer.stop();
+ calib_timer_.stop();
qDebug() << "pt: stopping translation calibration";
{
- auto [tmp, nsamples] = trans_calib.get_estimate();
- s.offset_fwd = int(tmp[0]);
- s.offset_up = int(tmp[1]);
- s.offset_right = int(tmp[2]);
+ auto [tmp, nsamples] = trans_calib_.get_estimate();
+ settings_.offset_fwd = int(tmp[0]);
+ settings_.offset_up = int(tmp[1]);
+ settings_.offset_right = int(tmp[2]);
}
}
- ui.tx_spin->setEnabled(!start);
- ui.ty_spin->setEnabled(!start);
- ui.tz_spin->setEnabled(!start);
+ ui_.tx_spin->setEnabled(!start);
+ ui_.ty_spin->setEnabled(!start);
+ ui_.tz_spin->setEnabled(!start);
if (start)
- ui.tcalib_button->setText(tr("Stop calibration"));
+ ui_.tcalib_button->setText(tr("Stop calibration"));
else
- ui.tcalib_button->setText(tr("Start calibration"));
+ ui_.tcalib_button->setText(tr("Start calibration"));
}
-settings::settings() : opts("neuralnet-tracker") {}
+Settings::Settings() : opts("neuralnet-tracker") {}
} // neuralnet_tracker_ns
-OPENTRACK_DECLARE_TRACKER(neuralnet_tracker, neuralnet_dialog, neuralnet_metadata)
+OPENTRACK_DECLARE_TRACKER(NeuralNetTracker, NeuralNetDialog, NeuralNetMetadata)