diff options
Diffstat (limited to 'tracker-neuralnet/tests.cpp')
-rw-r--r-- | tracker-neuralnet/tests.cpp | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/tracker-neuralnet/tests.cpp b/tracker-neuralnet/tests.cpp new file mode 100644 index 00000000..b1d2a6d0 --- /dev/null +++ b/tracker-neuralnet/tests.cpp @@ -0,0 +1,58 @@ +#include "model_adapters.h" + +#include <algorithm> +#include <numeric> +#include <cstdio> + +namespace neuralnet_tracker_tests +{ + + +void assert_(bool ok, const std::string& msg) +{ + if (ok) + return; + std::cout << msg << std::endl; + std::exit(-1); +} + + +void test_find_input_intensity_quantile() +{ + cv::Mat data(10,10, CV_8UC1); + std::iota(data.begin<uint8_t>(), data.end<uint8_t>(), 0); + + const float pct = 90; + + const int val = neuralnet_tracker_ns::find_input_intensity_quantile(data, pct); + + assert_(val == int(10*10*pct/100.f), "test_find_input_intensity_quantile failed"); +} + + +void test_normalize_brightness() +{ + cv::Mat data(10,10, CV_8UC1); + std::iota(data.begin<uint8_t>(), data.end<uint8_t>(), 0); + + cv::Mat out; + neuralnet_tracker_ns::normalize_brightness(data, out); + + auto [minit,maxit] = std::minmax_element(out.begin<float>(),out.end<float>()); + const auto minval = *minit; + const auto maxval = *maxit; + assert_(std::abs(minval + 0.5f) < 0.02, "test_normalize_brightness failed"); + // If the brightest value is lower than half-max, it will be boosted to half-max. + // Otherwise it will just be rescaled to [-.5, 0.5 ]. Here we have the low-brightness case. + assert_(std::abs(maxval - 0.0f) < 0.02, "test_normalize_brightness failed"); +} + + +void run() +{ + test_find_input_intensity_quantile(); + test_normalize_brightness(); +} + + +}
\ No newline at end of file |