summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet
diff options
context:
space:
mode:
Diffstat (limited to 'tracker-neuralnet')
-rw-r--r--tracker-neuralnet/BUILD.md24
-rw-r--r--tracker-neuralnet/CMakeLists.txt54
-rw-r--r--tracker-neuralnet/deadzone_filter.cpp173
-rw-r--r--tracker-neuralnet/deadzone_filter.h37
-rw-r--r--tracker-neuralnet/ftnoir_tracker_neuralnet.cpp1106
-rw-r--r--tracker-neuralnet/ftnoir_tracker_neuralnet.h230
-rw-r--r--tracker-neuralnet/lang/de_DE.ts172
-rw-r--r--tracker-neuralnet/lang/nl_NL.ts82
-rw-r--r--tracker-neuralnet/lang/ru_RU.ts121
-rw-r--r--tracker-neuralnet/lang/stub.ts82
-rw-r--r--tracker-neuralnet/lang/zh_CN.ts113
-rw-r--r--tracker-neuralnet/model_adapters.cpp416
-rw-r--r--tracker-neuralnet/model_adapters.h105
-rw-r--r--tracker-neuralnet/models/head-pose-0.2-big.onnxbin0 -> 44760256 bytes
-rw-r--r--tracker-neuralnet/models/head-pose-0.2-small.onnx (renamed from tracker-neuralnet/models/head-pose.onnx)bin13047683 -> 12926209 bytes
-rw-r--r--tracker-neuralnet/models/head-pose-0.3-big-quantized.onnxbin0 -> 11385815 bytes
-rw-r--r--tracker-neuralnet/neuralnet-trackercontrols.ui842
-rw-r--r--tracker-neuralnet/opencv_contrib.h120
-rw-r--r--tracker-neuralnet/preview.cpp135
-rw-r--r--tracker-neuralnet/preview.h60
-rw-r--r--tracker-neuralnet/redist/vcomp140.dllbin0 -> 151976 bytes
-rw-r--r--tracker-neuralnet/tests.cpp58
-rw-r--r--tracker-neuralnet/unscented_trafo.h132
23 files changed, 3094 insertions, 968 deletions
diff --git a/tracker-neuralnet/BUILD.md b/tracker-neuralnet/BUILD.md
index 8bb694dd..b8994b00 100644
--- a/tracker-neuralnet/BUILD.md
+++ b/tracker-neuralnet/BUILD.md
@@ -9,26 +9,12 @@ Source location: https://github.com/microsoft/onnxruntime
In order to build, execute `build.bat` as follows:
```
-$ build.bat --config RelWithDebInfo --x86 --build_dir .\buildx86\ \
- --enable_msvc_static_runtime --build_shared_lib --skip_tests \
- --cmake_generator "Visual Studio 15 2017"
+$ build.bat --config Release --x86 --cmake_extra_defines CMAKE_INSTALL_PREFIX="D:\Dev\onnxruntime-x86-release" --build_dir .\buildx86\ --enable_msvc_static_runtime --build_shared_lib --skip_tests --cmake_generator "Visual Studio 15 2017"
+$ cmake --install .\buildx64\Release
```
-Replace the argument for `--cmake_generator` if needed.
+Replace the argument for `--cmake_generator` if needed. Also adjust the build-and install directories.
-The result is a messy directory `buildx86\RelWithDebInfo\RelWithDebInfo`,
-but no proper distribution. However only a few files are needed. They can
-be copied manually and are listed in the following in their respective folders:
+This should place all required files in the directory specified by CMAKE_INSTALL_PREFIX.
-```
-onnxruntime-x86-release/include:
-cpu_provider_factory.h onnxruntime_cxx_api.h
-experimental_onnxruntime_cxx_api.h onnxruntime_cxx_inline.h
-experimental_onnxruntime_cxx_inline.h onnxruntime_session_options_config_keys.h
-onnxruntime_c_api.h
-
-onnxruntime-x86-release/lib:
-onnxruntime.dll onnxruntime.exp onnxruntime.lib onnxruntime.pdb
-```
-
-See also https://www.onnxruntime.ai/docs/how-to/build.html
+See also https://www.onnxruntime.ai/docs/how-to/build.html. \ No newline at end of file
diff --git a/tracker-neuralnet/CMakeLists.txt b/tracker-neuralnet/CMakeLists.txt
index d06f0c83..3729c789 100644
--- a/tracker-neuralnet/CMakeLists.txt
+++ b/tracker-neuralnet/CMakeLists.txt
@@ -1,23 +1,49 @@
include(opentrack-opencv)
+set(host-spec "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR} ${CMAKE_SIZEOF_VOID_P}")
+if(host-spec MATCHES "^Linux i[3-6]86 4$")
+ return()
+endif()
+
find_package(OpenCV QUIET)
find_package(OpenMP QUIET) # Used to control number of onnx threads.
-set(SDK_ONNX_LIBPATH "" CACHE FILEPATH "Full path of onnx library")
+find_package(ONNXRuntime QUIET)
-if(OpenCV_FOUND AND SDK_ONNX_LIBPATH AND OpenMP_FOUND)
- get_filename_component(ONNX_INCLUDE_DIR "${SDK_ONNX_LIBPATH}" DIRECTORY)
- get_filename_component(ONNX_INCLUDE_DIR "${ONNX_INCLUDE_DIR}" ABSOLUTE)
- set(ONNX_INCLUDE_DIR "${ONNX_INCLUDE_DIR}/../include")
+if(OpenCV_FOUND AND ONNXRuntime_FOUND AND OpenMP_FOUND)
+ if(MSVC)
+ add_compile_options(-EHsc)
+ add_definitions(-D_HAS_EXCEPTIONS=1)
+ endif()
otr_module(tracker-neuralnet)
- target_include_directories(${self} SYSTEM PUBLIC
- ${OpenCV_INCLUDE_DIRS} "${ONNX_INCLUDE_DIR}")
- target_link_libraries(${self}
- opentrack-cv "${SDK_ONNX_LIBPATH}" opencv_imgproc opencv_core
- opencv_imgcodecs opencv_calib3d
- OpenMP::OpenMP_C)
+
+ target_link_libraries(${self}
+ opentrack-cv
+ onnxruntime::onnxruntime
+ opencv_calib3d
+ opencv_imgproc
+ opencv_imgcodecs
+ opencv_core
+ OpenMP::OpenMP_CXX
+ )
+
+ # OpenMP::OpenMP_CXX doesn't set up the -fopenmp linking option, so set it up ourselves.
+ if(NOT MSVC)
+ target_link_options(${self} PUBLIC ${OpenMP_CXX_FLAGS})
+ endif()
install(
- FILES "models/head-localizer.onnx" "models/head-pose.onnx"
+ FILES "models/head-localizer.onnx"
+ "models/head-pose-0.2-big.onnx"
+ "models/head-pose-0.2-small.onnx"
+ "models/head-pose-0.3-big-quantized.onnx"
DESTINATION "${opentrack-libexec}/models"
- PERMISSIONS ${opentrack-perms-file})
-endif() \ No newline at end of file
+ PERMISSIONS ${opentrack-perms-file}
+ )
+
+ if(WIN32)
+ otr_install_lib("${ONNXRuntime_RUNTIME}" ".")
+ endif()
+ if(MSVC)
+ otr_install_lib("redist/vcomp140.dll" "${opentrack-bin}")
+ endif()
+endif()
diff --git a/tracker-neuralnet/deadzone_filter.cpp b/tracker-neuralnet/deadzone_filter.cpp
new file mode 100644
index 00000000..fa96eeb3
--- /dev/null
+++ b/tracker-neuralnet/deadzone_filter.cpp
@@ -0,0 +1,173 @@
+#include "deadzone_filter.h"
+#include "model_adapters.h"
+#include "opencv_contrib.h"
+#include "unscented_trafo.h"
+
+#include <tuple>
+#include <opencv2/core/base.hpp>
+#include <opencv2/core/matx.hpp>
+#include <opencv2/core/quaternion.hpp>
+
+namespace neuralnet_tracker_ns
+{
+
+using namespace cvcontrib;
+
+// Number of degrees of freedom of position and rotation
+static constexpr int dofs = 6;
+
+using StateVec = cv::Vec<float,dofs>;
+using StateCov = cv::Matx<float,dofs,dofs>;
+
+static constexpr int num_sigmas = ukf_cv::MerweScaledSigmaPoints<dofs>::num_sigmas;
+// Rescaling factor for position/size living in the space of the face crop.
+// Applied prior to application of UKF to prevent numerical problems.
+static constexpr float img_scale = 200.f;
+// Similar rescaling factor for position/size that live in world space.
+static constexpr float world_scale = 1000.f; // mm
+
+// Fills the 6 DoF covariance factor, as in L L^T factorization.
+// Covariance is given wrt the tangent space of current predictions
+StateCov make_tangent_space_uncertainty_tril(const PoseEstimator::Face &face)
+{
+ StateCov tril = StateCov::eye();
+ set_minor<3,3>(tril, 0, 0, face.center_size_cov_tril / img_scale);
+ set_minor<3,3>(tril, 3, 3, face.rotaxis_cov_tril);
+ return tril;
+}
+
+
+QuatPose apply_offset(const QuatPose& pose, const StateVec& offset)
+{
+ // Unpack
+ const cv::Vec3f dp = { offset[0], offset[1], offset[2] };
+ const cv::Quatf dr = cv::Quatf::createFromRvec(cv::Vec3f{ offset[3], offset[4], offset[5] });
+ const auto p = pose.pos + dp;
+ const auto r = pose.rot * dr;
+ return { r, p };
+}
+
+
+std::tuple<cv::Quatf, cv::Point2f, float> apply_offset(const PoseEstimator::Face& face, const StateVec& offset)
+{
+ const cv::Quatf dr = cv::Quatf::createFromRvec(cv::Vec3f{ offset[3], offset[4], offset[5] });
+ const auto r = face.rotation * dr;
+
+ const cv::Point2f p = {
+ face.center.x + offset[0]*img_scale,
+ face.center.y + offset[1]*img_scale
+ };
+
+ // Intercept the case where the head size stddev became so large that the sigma points
+ // were created with negative head size (mean - constant*stddev ...). Negative head size
+ // is bad. But this is fine. The unscented transform where this function comes into play
+ // is designed to handle non-linearities like this.
+ const float sz = std::max(0.1f*face.size, face.size + offset[2]*img_scale);
+
+ return {
+ r,
+ p,
+ sz,
+ };
+}
+
+
+StateVec relative_to(const QuatPose& reference, const QuatPose& pose)
+{
+ const auto p = pose.pos - reference.pos;
+ const auto r = toRotVec(reference.rot.conjugate()*pose.rot);
+ return StateVec{ p[0], p[1], p[2], r[0], r[1], r[2] };
+}
+
+
+ukf_cv::SigmaPoints<dofs> relative_to(const QuatPose& pose, const std::array<QuatPose,num_sigmas>& sigmas)
+{
+ ukf_cv::SigmaPoints<dofs> out; // Beware, the number of points is != the number of DoFs.
+ std::transform(sigmas.begin(), sigmas.end(), out.begin(), [&pose](const QuatPose& s) {
+ return relative_to(pose, s);
+ });
+ return out;
+}
+
+
+std::array<QuatPose,num_sigmas> compute_world_pose_from_sigma_point(const PoseEstimator::Face& face, const ukf_cv::SigmaPoints<dofs>& sigmas, Face2WorldFunction face2world)
+{
+ std::array<QuatPose,num_sigmas> out;
+ std::transform(sigmas.begin(), sigmas.end(), out.begin(), [face2world=std::move(face2world), &face](const StateVec& sigma_point) {
+ // First unpack the state vector and generate quaternion rotation w.r.t image space.
+ const auto [rotation, center, size] = apply_offset(face, sigma_point);
+ // Then transform ...
+ QuatPose pose = face2world(rotation, center, size);
+ pose.pos /= world_scale;
+ return pose;
+ });
+ return out;
+}
+
+
+StateVec apply_filter_to_offset(const StateVec& offset, const StateCov& offset_cov, float, const FiltParams& params)
+{
+ // Offset and Cov represent a multivariate normal distribution, which is the probability of the new pose measured w.r.t the previous one.
+ // Prob(x) ~exp(-(x-mu)t Cov^-1 (x-mu))
+ // We want to attenuate this offset, or zero it out completely, to obtain a deadzone-filter behaviour. The size of the deadzone shall be
+ // determined by the covariance projected to the offset direction like so:
+ // Take x = mu - mu / |mu| * alpha
+ // p(alpha) ~exp(-alpha^2 / |mu|^2 * mut Cov^-1 mu) = ~exp(-alpha^2 / sigma^2) with sigma^2 = mut Cov^-1 mu / |mu|^2.
+ // So this projection is like a 1d normal distribution with some standard deviation, which we take to scale the deadzone.
+
+ bool ok = true;
+
+ const float len_div_sigma_sqr = offset.dot(offset_cov.inv(cv::DECOMP_CHOLESKY, &ok) * offset);
+
+ const float attenuation = (ok) ? sigmoid((std::sqrt(len_div_sigma_sqr) - params.deadzone_size)*params.deadzone_hardness) : 1.f;
+
+ // {
+ // std::cout << "cov diag: " << offset_cov.diag() << std::endl;
+ // std::cout << "offset: " << cv::norm(offset) << std::endl;
+ // std::cout << "len_div_sigma_sqr: " << cv::norm(len_div_sigma_sqr) << std::endl;
+ // std::cout << "attenuation (" << ok << "): " << attenuation << std::endl;
+ // }
+
+ return offset*attenuation;
+}
+
+
+QuatPose apply_filter(const PoseEstimator::Face &face, const QuatPose& previous_pose_, float dt, Face2WorldFunction face2world, const FiltParams& params)
+{
+ ukf_cv::MerweScaledSigmaPoints<dofs> unscentedtrafo;
+ auto previous_pose = previous_pose_;
+ previous_pose.pos /= world_scale;
+
+ // Get 6 DoF covariance factor for the predictions in the face crop space.
+ const auto cov_tril = make_tangent_space_uncertainty_tril(face);
+
+ // Compute so called sigma points. These represent the distribution from the covariance matrix in terms of
+ // sampling points.
+ const ukf_cv::SigmaPoints<dofs> sigmas = unscentedtrafo.compute_sigmas(to_vec(StateVec::zeros()), cov_tril, true);
+
+ // The filter uses an unscented transform to translate that into a distribution for the offset from the previous pose.
+ // The trick is to transform the sampling points and compute a covariance from them in the output space.
+ // We have many of these sigma points. This is why that callback comes into play here.
+ // The transform to 3d world space is more than Face2WorldFunction because we also need to apply the sigma point (as
+ // a relative offset) to the pose in face crop space.
+ const std::array<QuatPose,num_sigmas> pose_sigmas = compute_world_pose_from_sigma_point(face, sigmas, std::move(face2world));
+
+ // Compute sigma points relative to the previous pose
+ const ukf_cv::SigmaPoints<dofs> deltas_sigmas = relative_to(previous_pose, pose_sigmas);
+
+ // Compute the mean offset from the last pose and the spread due to the networks uncertainty output.
+ const auto [offset, offset_cov] = unscentedtrafo.compute_statistics(deltas_sigmas);
+
+ // Then the deadzone is applied to the offset and finally the previous pose is transformed by the offset to arrive
+ // at the final output.
+ const StateVec scaled_offset = apply_filter_to_offset(offset, offset_cov, dt, params);
+
+ QuatPose new_pose = apply_offset(previous_pose, scaled_offset);
+
+ new_pose.pos *= world_scale;
+
+ return new_pose;
+}
+
+
+} // namespace neuralnet_tracker_ns \ No newline at end of file
diff --git a/tracker-neuralnet/deadzone_filter.h b/tracker-neuralnet/deadzone_filter.h
new file mode 100644
index 00000000..a9b6aada
--- /dev/null
+++ b/tracker-neuralnet/deadzone_filter.h
@@ -0,0 +1,37 @@
+#pragma once
+
+#include "unscented_trafo.h"
+#include "opencv_contrib.h"
+#include "model_adapters.h"
+
+namespace neuralnet_tracker_ns
+{
+
+/// Represents a 6d pose by quaternion rotation and position vector.
+struct QuatPose {
+ cv::Quatf rot;
+ cv::Vec3f pos;
+};
+
+struct FiltParams
+{
+ float deadzone_hardness = 1.f;
+ float deadzone_size = 1.f;
+};
+
+/** Callback type for converting data from the `Face` struct to a 6d pose.
+*
+* This callback is needed because it depends on things that the filter doesn't have to know about and it is called multiple times
+* due to the way how uncertainty estimates are handled
+*/
+using Face2WorldFunction = std::function<QuatPose (const cv::Quatf&, const cv::Point2f&, float)>;
+
+/** Applies a deadzone filter similar to the one used in the Hamilton filter.
+*
+* What sets this apart is that the deadzone size scales with the uncertainty estimate of the network.
+* The rotation uncertainty is represented by a covariance matrix for the distribution of a rotation vector which
+* describes the offset from the mean rotation (the quaternion in the `Face` struct).
+*/
+QuatPose apply_filter(const PoseEstimator::Face &face, const QuatPose& previous_pose, float dt, Face2WorldFunction face2world, const FiltParams& params);
+
+} // namespace neuralnet_tracker_ns \ No newline at end of file
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
index 2fad17aa..1fd50a94 100644
--- a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
+++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
@@ -6,16 +6,19 @@
*/
#include "ftnoir_tracker_neuralnet.h"
+#include "deadzone_filter.h"
+#include "opencv_contrib.h"
+
#include "compat/sleep.hpp"
#include "compat/math-imports.hpp"
-#include "cv/init.hpp"
-#include <opencv2/core.hpp>
-#include <opencv2/core/hal/interface.h>
-#include <opencv2/core/types.hpp>
-#include <opencv2/calib3d.hpp>
-#include <opencv2/imgcodecs.hpp>
#include "compat/timer.hpp"
+#include "compat/check-visible.hpp"
+#include "cv/init.hpp"
+
#include <omp.h>
+#include <onnxruntime_cxx_api.h>
+#include <opencv2/core.hpp>
+#include <opencv2/core/quaternion.hpp>
#ifdef _MSC_VER
# pragma warning(disable : 4702)
@@ -24,26 +27,32 @@
#include <QMutexLocker>
#include <QDebug>
#include <QFile>
+#include <QFileDialog>
+#include <QFileInfo>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <chrono>
+#include <string>
+#include <stdexcept>
+#include <unordered_map>
// Some demo code for onnx
// https://github.com/microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp
// https://github.com/leimao/ONNX-Runtime-Inference/blob/main/src/inference.cpp
-namespace
+namespace neuralnet_tracker_ns
{
-using numeric_types::vec3;
-using numeric_types::vec2;
-using numeric_types::mat33;
-
-// Minimal difference if at all going from 1 to 2 threads.
-static constexpr int num_threads = 1;
+using namespace cvcontrib;
+using f = float;
+template<int n> using vec = cv::Vec<f, n>;
+template<int y, int x> using mat = cv::Matx<f, y, x>;
+using vec2 = vec<2>;
+using vec3 = vec<3>;
+using mat33 = mat<3, 3>;
#if _MSC_VER
std::wstring convert(const QString &s) { return s.toStdWString(); }
@@ -52,467 +61,405 @@ std::string convert(const QString &s) { return s.toStdString(); }
#endif
-float sigmoid(float x)
+QDir get_default_model_directory()
{
- return 1.f/(1.f + std::exp(-x));
+ return QDir(OPENTRACK_BASE_PATH+ "/" OPENTRACK_LIBRARY_PATH "models");
}
-template<class T>
-cv::Rect_<T> squarize(const cv::Rect_<T> &r)
+int enum_to_fps(int value)
{
- cv::Point_<T> c{r.x + r.width/T(2), r.y + r.height/T(2)};
- const T sz = std::max(r.height, r.width);
- return {c.x - sz/T(2), c.y - sz/T(2), sz, sz};
-}
+ int fps = 0;
+ switch (value)
+ {
+ default: eval_once(qDebug() << "neuralnet tracker: invalid fps enum value");
+ [[fallthrough]];
+ case fps_default: fps = 0; break;
+ case fps_30: fps = 30; break;
+ case fps_60: fps = 60; break;
+ case fps_75: fps = 75; break;
+ case fps_125: fps = 125; break;
+ case fps_200: fps = 200; break;
+ case fps_50: fps = 50; break;
+ case fps_100: fps = 100; break;
+ case fps_120: fps = 120; break;
+ case fps_300: fps = 300; break;
+ case fps_250: fps = 250; break;
+ }
-int compute_padding(const cv::Rect &r, int w, int h)
-{
- using std::max;
- return max({
- max(-r.x, 0),
- max(-r.y, 0),
- max(r.x+r.width-w, 0),
- max(r.y+r.height-h, 0)
- });
+ return fps;
}
-cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w)
+template<class F>
+struct OnScopeExit
{
- auto unnorm = [](float x) -> float { return 0.5*(x+1); };
- auto tl = r.tl();
- auto br = r.br();
- auto x0 = unnorm(tl.x)*w;
- auto y0 = unnorm(tl.y)*h;
- auto x1 = unnorm(br.x)*w;
- auto y1 = unnorm(br.y)*h;
- return {
- x0, y0, x1-x0, y1-y0
- };
-}
+ explicit OnScopeExit(F&& f) : f_{ f } {}
+ ~OnScopeExit() noexcept
+ {
+ f_();
+ }
+ F f_;
+};
-cv::Point2f normalize(const cv::Point2f &p, int h, int w)
+
+CamIntrinsics make_intrinsics(const cv::Mat& img, const Settings& settings)
{
+ const int w = img.cols, h = img.rows;
+ const double diag_fov = settings.fov * M_PI / 180.;
+ const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w));
+ const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h));
+ const double focal_length_w = 1. / tan(.5 * fov_w);
+ const double focal_length_h = 1. / tan(.5 * fov_h);
+ /* a
+ ______ <--- here is sensor area
+ | /
+ | /
+ f | /
+ | / 2 x angle is the fov
+ |/
+ <--- here is the hole of the pinhole camera
+
+ So, a / f = tan(fov / 2)
+ => f = a/tan(fov/2)
+ What is a?
+ 1 if we define f in terms of clip space where the image plane goes from -1 to 1. Because a is the half-width.
+ */
+
return {
- p.x/w*2.f-1.f,
- p.y/h*2.f-1.f
+ (float)focal_length_w,
+ (float)focal_length_h,
+ (float)fov_w,
+ (float)fov_h
};
}
-mat33 rotation_from_two_vectors(const vec3 &a, const vec3 &b)
+cv::Rect make_crop_rect_multiple_of(const cv::Size &size, int multiple)
{
- vec3 axis = a.cross(b);
- const float len_a = cv::norm(a);
- const float len_b = cv::norm(b);
- const float len_axis = cv::norm(axis);
- const float sin_angle = std::clamp(len_axis / (len_a * len_b), -1.f, 1.f);
- const float angle = std::asin(sin_angle);
- axis *= angle/(1.e-12 + len_axis);
- mat33 out;
- cv::Rodrigues(axis, out);
- return out;
+ const int new_w = (size.width / multiple) * multiple;
+ const int new_h = (size.height / multiple) * multiple;
+ return cv::Rect(
+ (size.width-new_w)/2,
+ (size.height-new_h)/2,
+ new_w,
+ new_h
+ );
}
-
-/* Computes correction due to head being off screen center.
- x, y: In screen space, i.e. in [-1,1]
- focal_length_x: In screen space
-*/
-mat33 compute_rotation_correction(const cv::Point2f &p, float focal_length_x)
+template<class T>
+cv::Rect_<T> squarize(const cv::Rect_<T> &r)
{
- return rotation_from_two_vectors(
- {1.f,0.f,0.f},
- {focal_length_x, p.y, p.x});
+ cv::Point_<T> c{r.x + r.width/T(2), r.y + r.height/T(2)};
+ const T sz = std::max(r.height, r.width);
+ return {c.x - sz/T(2), c.y - sz/T(2), sz, sz};
}
-mat33 quaternion_to_mat33(const std::array<float,4> quat)
+template<class T>
+cv::Rect_<T> expand(const cv::Rect_<T>& r, T factor)
{
- mat33 m;
- const float w = quat[0];
- const float i = quat[1];
- const float j = quat[2];
- const float k = quat[3];
- m(0,0) = 1.f - 2.f*(j*j + k*k);
- m(1,0) = 2.f*(i*j + k*w);
- m(2,0) = 2.f*(i*k - j*w);
- m(0,1) = 2.f*(i*j - k*w);
- m(1,1) = 1.f - 2.f*(i*i + k*k);
- m(2,1) = 2.f*(j*k + i*w);
- m(0,2) = 2.f*(i*k + j*w);
- m(1,2) = 2.f*(j*k - i*w);
- m(2,2) = 1.f - 2.f*(i*i + j*j);
- return m;
+ // xnew = l+.5*w - w*f*0.5 = l + .5*(w - new_w)
+ const cv::Size_<T> new_size = { r.width * factor, r.height * factor };
+ const cv::Point_<T> new_tl = r.tl() + (as_point(r.size()) - as_point(new_size)) / T(2);
+ return cv::Rect_<T>(new_tl, new_size);
}
template<class T>
-T iou(const cv::Rect_<T> &a, const cv::Rect_<T> &b)
+cv::Rect_<T> ewa_filter(const cv::Rect_<T>& last, const cv::Rect_<T>& current, T alpha)
{
- auto i = a & b;
- return double{i.area()} / (a.area()+b.area()-i.area());
+ const auto last_center = T(0.5) * (last.tl() + last.br());
+ const auto cur_center = T(0.5) * (current.tl() + current.br());
+ const cv::Point_<T> new_size = as_point(last.size()) + alpha * (as_point(current.size()) - as_point(last.size()));
+ const cv::Point_<T> new_center = last_center + alpha * (cur_center - last_center);
+ return cv::Rect_<T>(new_center - T(0.5) * new_size, as_size(new_size));
}
-} // namespace
-
-
-namespace neuralnet_tracker_ns
+cv::Vec3f image_to_world(float x, float y, float size, float reference_size_in_mm, const cv::Size2i& image_size, const CamIntrinsics& intrinsics)
{
+ /*
+ Compute the location the network outputs in 3d space.
-
-int enum_to_fps(int value)
-{
- switch (value)
- {
- case fps_30: return 30;
- case fps_60: return 60;
- default: [[fallthrough]];
- case fps_default: return 0;
- }
+ hhhhhh <- head size (meters)
+ \ | -----------------------
+ \ | \
+ \ | |
+ \ | |- x (meters)
+ ____ <- face.size / width |
+ \ | | |
+ \| |- focal length /
+ ------------------------
+ ------------------------------------------------>> z direction
+ z/x = zi / f
+ zi = image position
+ z = world position
+ f = focal length
+
+ We can also do deltas:
+ dz / x = dzi / f
+ => x = dz / dzi * f
+ which means we can compute x from the head size (dzi) if we assume some reference size (dz).
+ */
+ const float head_size_vertical = 2.f*size; // Size from the model is more like half the real vertical size of a human head.
+ const float xpos = -(intrinsics.focal_length_w * image_size.width * 0.5f) / head_size_vertical * reference_size_in_mm;
+ const float zpos = (x / image_size.width * 2.f - 1.f) * xpos / intrinsics.focal_length_w;
+ const float ypos = (y / image_size.height * 2.f - 1.f) * xpos / intrinsics.focal_length_h;
+ return {xpos, ypos, zpos};
}
-Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
- session{std::move(session)},
- scaled_frame(input_img_height, input_img_width, CV_8U),
- input_mat(input_img_height, input_img_width, CV_32F)
+vec2 world_to_image(const cv::Vec3f& pos, const cv::Size2i& image_size, const CamIntrinsics& intrinsics)
{
- // Only works when input_mat does not reallocated memory ...which it should not.
- // Non-owning memory reference to input_mat?
- // Note: shape = (bach x channels x h x w)
- const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
- input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);
-
- const std::int64_t output_shape[2] = { 1, 5 };
- output_val = Ort::Value::CreateTensor<float>(allocator_info, results.data(), results.size(), output_shape, 2);
+ const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w;
+ const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h;
+ const float x = (xscr+1.)*0.5f*image_size.width;
+ const float y = (yscr+1.)*0.5f*image_size.height;
+ return {x, y};
}
-std::pair<float, cv::Rect2f> Localizer::run(
- const cv::Mat &frame)
+cv::Quatf image_to_world(cv::Quatf q)
{
- auto p = input_mat.ptr(0);
-
- cv::resize(frame, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);
- scaled_frame.convertTo(input_mat, CV_32F, 1./255., -0.5);
-
- assert (input_mat.ptr(0) == p);
- assert (!input_mat.empty() && input_mat.isContinuous());
- assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);
-
- const char* input_names[] = {"x"};
- const char* output_names[] = {"logit_box"};
-
- //Timer t_; t_.start();
-
- const auto nt = omp_get_num_threads();
- omp_set_num_threads(num_threads);
- session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, &output_val, 1);
- omp_set_num_threads(nt);
-
- //qDebug() << "localizer: " << t_.elapsed_ms() << " ms\n";
-
- const cv::Rect2f roi = unnormalize(cv::Rect2f{
- results[1],
- results[2],
- results[3]-results[1], // Width
- results[4]-results[2] // Height
- }, frame.rows, frame.cols);
- const float score = sigmoid(results[0]);
-
- return { score, roi };
+ std::swap(q[1], q[3]);
+ q[1] = -q[1];
+ q[2] = -q[2];
+ q[3] = -q[3];
+ return q;
}
-PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
- session{std::move(session)},
- scaled_frame(input_img_height, input_img_width, CV_8U),
- input_mat(input_img_height, input_img_width, CV_32F)
+cv::Point2f normalize(const cv::Point2f &p, int h, int w)
{
- {
- const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
- input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);
- }
-
- {
- const std::int64_t output_shape[2] = { 1, 3 };
- output_val[0] = Ort::Value::CreateTensor<float>(
- allocator_info, &output_coord[0], output_coord.rows, output_shape, 2);
- }
-
- {
- const std::int64_t output_shape[2] = { 1, 4 };
- output_val[1] = Ort::Value::CreateTensor<float>(
- allocator_info, &output_quat[0], output_quat.rows, output_shape, 2);
- }
-
- {
- const std::int64_t output_shape[2] = { 1, 4 };
- output_val[2] = Ort::Value::CreateTensor<float>(
- allocator_info, &output_box[0], output_box.rows, output_shape, 2);
- }
+ return {
+ p.x/w*2.f-1.f,
+ p.y/h*2.f-1.f
+ };
}
-int PoseEstimator::find_input_intensity_90_pct_quantile() const
+cv::Quatf rotation_from_two_vectors(const vec3 &a, const vec3 &b)
{
- const int channels[] = { 0 };
- const int hist_size[] = { 255 };
- float range[] = { 0, 256 };
- const float* ranges[] = { range };
- cv::Mat hist;
- cv::calcHist(&scaled_frame, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
- int gray_level = 0;
- const int num_pixels_quantile = scaled_frame.total()*0.9f;
- int num_pixels_accum = 0;
- for (int i=0; i<hist_size[0]; ++i)
+ // |axis| = |a| * |b| * sin(alpha)
+ const vec3 axis = a.cross(b);
+ // dot = |a|*|b|*cos(alpha)
+ const float dot = a.dot(b);
+ const float len = cv::norm(axis);
+ vec3 normed_axis = axis / len;
+ float angle = std::atan2(len, dot);
+ if (!(std::isfinite(normed_axis[0]) && std::isfinite(normed_axis[1]) && std::isfinite(normed_axis[2])))
{
- num_pixels_accum += hist.at<float>(i);
- if (num_pixels_accum > num_pixels_quantile)
- {
- gray_level = i;
- break;
- }
+ angle = 0.f;
+ normed_axis = vec3{1.,0.,0.};
}
- return gray_level;
+ return cv::Quatf::createFromAngleAxis(angle, normed_axis);
}
-std::optional<PoseEstimator::Face> PoseEstimator::run(
- const cv::Mat &frame, const cv::Rect &box)
+// Computes correction due to head being off screen center.
+cv::Quatf compute_rotation_correction(const cv::Point3f& p)
{
- cv::Mat cropped;
-
- const int patch_size = std::max(box.width, box.height)*1.05;
- const cv::Point2f patch_center = {
- std::clamp<float>(box.x + 0.5f*box.width, 0.f, frame.cols),
- std::clamp<float>(box.y + 0.5f*box.height, 0.f, frame.rows)
- };
- cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped);
-
- // Will get failure if patch_center is outside image boundaries.
- // Have to catch this case.
- if (cropped.rows != patch_size || cropped.cols != patch_size)
- return {};
-
- auto p = input_mat.ptr(0);
-
- cv::resize(cropped, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);
-
- // Automatic brightness amplification.
- const int brightness = find_input_intensity_90_pct_quantile();
- const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255;
- const double beta = -0.5;
-
- scaled_frame.convertTo(input_mat, CV_32F, alpha, beta);
-
- assert (input_mat.ptr(0) == p);
- assert (!input_mat.empty() && input_mat.isContinuous());
- assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);
-
- const char* input_names[] = {"x"};
- const char* output_names[] = {"pos_size", "quat", "box"};
-
- //Timer t_; t_.start();
+ return rotation_from_two_vectors(
+ {-1.f,0.f,0.f}, p);
+}
- const auto nt = omp_get_num_threads();
- omp_set_num_threads(num_threads);
- session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, output_val, 3);
- omp_set_num_threads(nt);
- // FIXME: Execution time fluctuates wildly. 19 to 26 ms. Why???
- // The instructions are always the same. Maybe a memory allocation
- // issue. The ONNX api suggests that tensor are allocated in an
- // arena. Does that matter? Maybe the issue is something else?
+// Intersection over union. A value between 0 and 1 which measures the match between the bounding boxes.
+template<class T>
+T iou(const cv::Rect_<T> &a, const cv::Rect_<T> &b)
+{
+ auto i = a & b;
+ return double{i.area()} / (a.area()+b.area()-i.area());
+}
- //qDebug() << "pose net: " << t_.elapsed_ms() << " ms\n";
- // Perform coordinate transformation.
- // From patch-local normalized in [-1,1] to
- // frame unnormalized pixel coordinates.
+class GuardedThreadCountSwitch
+{
+ int old_num_threads_cv_ = 1;
+ int old_num_threads_omp_ = 1;
+ public:
+ GuardedThreadCountSwitch(int num_threads)
+ {
+ old_num_threads_cv_ = cv::getNumThreads();
+ old_num_threads_omp_ = omp_get_num_threads();
+ omp_set_num_threads(num_threads);
+ cv::setNumThreads(num_threads);
+ }
- const cv::Point2f center = patch_center +
- (0.5f*patch_size)*cv::Point2f{output_coord[0], output_coord[1]};
+ ~GuardedThreadCountSwitch()
+ {
+ omp_set_num_threads(old_num_threads_omp_);
+ cv::setNumThreads(old_num_threads_cv_);
+ }
- const float size = patch_size*0.5f*output_coord[2];
+ GuardedThreadCountSwitch(const GuardedThreadCountSwitch&) = delete;
+ GuardedThreadCountSwitch& operator=(const GuardedThreadCountSwitch&) = delete;
+};
- // Following Eigen which uses quat components in the order w, x, y, z.
- const std::array<float,4> rotation = {
- output_quat[3],
- output_quat[0],
- output_quat[1],
- output_quat[2] };
- const cv::Rect2f outbox = {
- patch_center.x + (0.5f*patch_size)*output_box[0],
- patch_center.y + (0.5f*patch_size)*output_box[1],
- 0.5f*patch_size*(output_box[2]-output_box[0]),
- 0.5f*patch_size*(output_box[3]-output_box[1])
- };
+bool NeuralNetTracker::detect()
+{
+ double inference_time = 0.;
- return std::optional<Face>({
- rotation, outbox, center, size
- });
-}
+ OnScopeExit update_inference_time{ [&]() {
+ QMutexLocker lck{ &stats_mtx_ };
+ inference_time_ = inference_time;
+ } };
-cv::Mat PoseEstimator::last_network_input() const
-{
- cv::Mat ret;
- if (!input_mat.empty())
+ // If there is no past ROI from the localizer or if the match of its output
+ // with the current ROI is too poor we have to run it again. This causes a
+ // latency spike of maybe an additional 50%. But it only occurs when the user
+ // moves his head far enough - or when the tracking ist lost ...
+ if (!last_localizer_roi_ || !last_roi_ ||
+ iou(*last_localizer_roi_,*last_roi_)<0.25)
{
- input_mat.convertTo(ret, CV_8U, 255., 127.);
- cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
- }
- return ret;
-}
+ auto [p, rect] = localizer_->run(grayscale_);
+ inference_time += localizer_->last_inference_time_millis();
-
-bool neuralnet_tracker::detect()
-{
- // Note: BGR colors!
- if (!last_localizer_roi || !last_roi ||
- iou(*last_localizer_roi,*last_roi)<0.25)
- {
- auto [p, rect] = localizer->run(grayscale);
- if (p > 0.5)
+ if (last_roi_ && iou(rect,*last_roi_)>=0.25 && p > 0.5)
+ {
+ // The new ROI matches the result from tracking, so the user is
+ // still there and to not disturb recurrent models, we only update
+ // ...
+ last_localizer_roi_ = rect;
+ }
+ else if (p > 0.5 && rect.height > 32 && rect.width > 32)
{
- last_localizer_roi = rect;
- last_roi = rect;
+ // Tracking probably got lost since the ROI's don't match, but the
+ // localizer still finds a face, so we use the ROI from the localizer
+ last_localizer_roi_ = rect;
+ last_roi_ = rect;
+ }
+ else
+ {
+ // Tracking lost and no localization result. The user probably can't be seen.
+ last_roi_.reset();
+ last_localizer_roi_.reset();
}
}
- if (!last_roi)
+ if (!last_roi_)
+ {
+ // Last iteration the tracker failed to generate a trustworthy
+ // roi and the localizer also cannot find a face.
+ draw_gizmos({}, {});
return false;
+ }
+
+ auto face = poseestimator_->run(grayscale_, *last_roi_);
+ inference_time += poseestimator_->last_inference_time_millis();
- auto face = poseestimator->run(grayscale, *last_roi);
-
if (!face)
{
- last_roi.reset();
+ last_roi_.reset();
+ draw_gizmos({}, {});
return false;
}
- last_roi = face->box;
+ cv::Rect2f roi = expand(face->box, (float)settings_.roi_zoom);
- Affine pose = compute_pose(*face);
+ last_roi_ = ewa_filter(*last_roi_, roi, float(settings_.roi_filter_alpha));
- draw_gizmos(frame, *face, pose);
+ QuatPose pose = compute_filtered_pose(*face);
+ last_pose_ = pose;
+
+ Affine pose_affine = {
+ pose.rot.toRotMat3x3(cv::QUAT_ASSUME_UNIT),
+ pose.pos };
{
- QMutexLocker lck(&mtx);
- this->pose_ = pose;
+ QMutexLocker lck(&mtx_);
+ last_pose_affine_ = pose_affine;
}
+ draw_gizmos(*face, last_pose_affine_);
+
return true;
}
-Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const
+void NeuralNetTracker::draw_gizmos(
+ const std::optional<PoseEstimator::Face> &face,
+ const Affine& pose)
{
- const mat33 rot_correction = compute_rotation_correction(
- normalize(face.center, frame.rows, frame.cols),
- intrinsics.focal_length_w);
+ if (!is_visible_)
+ return;
- const mat33 m = rot_correction * quaternion_to_mat33(face.rotation);
+ preview_.draw_gizmos(
+ face,
+ last_roi_,
+ last_localizer_roi_,
+ world_to_image(pose.t, grayscale_.size(), intrinsics_));
- /*
-
- hhhhhh <- head size (meters)
- \ | -----------------------
- \ | \
- \ | |
- \ | |- tz (meters)
- ____ <- face.size / width |
- \ | | |
- \| |- focal length /
- ------------------------
- */
+ if (settings_.show_network_input)
+ {
+ cv::Mat netinput = poseestimator_->last_network_input();
+ preview_.overlay_netinput(netinput);
+ }
+}
+
+
+QuatPose NeuralNetTracker::transform_to_world_pose(const cv::Quatf &face_rotation, const cv::Point2f& face_xy, const float face_size) const
+{
+ const vec3 face_world_pos = image_to_world(
+ face_xy.x, face_xy.y, face_size, HEAD_SIZE_MM,
+ grayscale_.size(),
+ intrinsics_);
+
+ const cv::Quatf rot_correction = compute_rotation_correction(
+ face_world_pos);
- // Compute the location the network outputs in 3d space.
- const vec3 face_world_pos = image_to_world(face.center.x, face.center.y, face.size, head_size_mm);
+ cv::Quatf rot = rot_correction * image_to_world(face_rotation);
// But this is in general not the location of the rotation joint in the neck.
- // So we need an extra offset. Which we determine by solving
+ // So we need an extra offset. Which we determine by computing
// z,y,z-pos = head_joint_loc + R_face * offset
+ const vec3 local_offset = vec3{
+ static_cast<float>(settings_.offset_fwd),
+ static_cast<float>(settings_.offset_up),
+ static_cast<float>(settings_.offset_right)};
+ const vec3 offset = rotate(rot, local_offset);
+ const vec3 pos = face_world_pos + offset;
- const vec3 pos = face_world_pos
- + m * vec3{
- static_cast<float>(s.offset_fwd),
- static_cast<float>(s.offset_up),
- static_cast<float>(s.offset_right)};
-
- return { m, pos };
+ return { rot, pos };
}
-void neuralnet_tracker::draw_gizmos(
- cv::Mat frame,
- const PoseEstimator::Face &face,
- const Affine& pose) const
+QuatPose NeuralNetTracker::compute_filtered_pose(const PoseEstimator::Face &face)
{
- if (last_roi)
- {
- const int col = 255;
- cv::rectangle(frame, *last_roi, cv::Scalar(0, 255, 0), /*thickness=*/1);
- }
- if (last_localizer_roi)
- {
- const int col = 255;
- cv::rectangle(frame, *last_localizer_roi, cv::Scalar(col, 0, 255-col), /*thickness=*/1);
- }
-
- if (face.size>=1.f)
- cv::circle(frame, static_cast<cv::Point>(face.center), int(face.size), cv::Scalar(255,255,255), 2);
- cv::circle(frame, static_cast<cv::Point>(face.center), 3, cv::Scalar(255,255,255), -1);
-
- auto draw_coord_line = [&](int i, const cv::Scalar& color)
- {
- const float vx = -pose.R(2,i);
- const float vy = -pose.R(1,i);
- static constexpr float len = 100.f;
- cv::Point q = face.center + len*cv::Point2f{vx, vy};
- cv::line(frame, static_cast<cv::Point>(face.center), static_cast<cv::Point>(q), color, 2);
- };
- draw_coord_line(0, {0, 0, 255});
- draw_coord_line(1, {0, 255, 0});
- draw_coord_line(2, {255, 0, 0});
-
- if (s.show_network_input)
+ if (fps_ > 0.001 && last_pose_ && poseestimator_->has_uncertainty())
{
- cv::Mat netinput = poseestimator->last_network_input();
- if (!netinput.empty())
- {
- const int w = std::min(netinput.cols, frame.cols);
- const int h = std::min(netinput.rows, frame.rows);
- cv::Rect roi(0, 0, w, h);
- netinput(roi).copyTo(frame(roi));
- }
+ auto image2world = [this](const cv::Quatf &face_rotation, const cv::Point2f& face_xy, const float face_size) {
+ return this->transform_to_world_pose(face_rotation, face_xy, face_size); };
+
+ return apply_filter(
+ face,
+ *last_pose_,
+ 1./fps_,
+ std::move(image2world),
+ FiltParams{
+ float(settings_.deadzone_hardness),
+ float(settings_.deadzone_size)
+ });
}
+ else
{
- // Draw the computed joint position
- auto xy = world_to_image(pose.t);
- cv::circle(frame, cv::Point(xy[0],xy[1]), 5, cv::Scalar(0,0,255), -1);
+ return transform_to_world_pose(face.rotation, face.center, face.size);
}
-
- char buf[128];
- ::snprintf(buf, sizeof(buf), "%d Hz, Max: %d ms", clamp(int(fps), 0, 9999), int(max_frame_time*1000.));
- cv::putText(frame, buf, cv::Point(10, frame.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1);
}
-neuralnet_tracker::neuralnet_tracker()
+NeuralNetTracker::NeuralNetTracker()
{
opencv_init();
- cv::setNumThreads(num_threads);
+ neuralnet_tracker_tests::run();
}
-neuralnet_tracker::~neuralnet_tracker()
+NeuralNetTracker::~NeuralNetTracker()
{
requestInterruption();
wait();
@@ -521,130 +468,107 @@ neuralnet_tracker::~neuralnet_tracker()
}
-module_status neuralnet_tracker::start_tracker(QFrame* videoframe)
+module_status NeuralNetTracker::start_tracker(QFrame* videoframe)
{
videoframe->show();
- videoWidget = std::make_unique<cv_video_widget>(videoframe);
- layout = std::make_unique<QHBoxLayout>();
- layout->setContentsMargins(0, 0, 0, 0);
- layout->addWidget(videoWidget.get());
- videoframe->setLayout(layout.get());
- videoWidget->show();
+ video_widget_ = std::make_unique<cv_video_widget>(videoframe);
+ layout_ = std::make_unique<QHBoxLayout>();
+ layout_->setContentsMargins(0, 0, 0, 0);
+ layout_->addWidget(&*video_widget_);
+ videoframe->setLayout(&*layout_);
+ video_widget_->show();
+ num_threads_ = settings_.num_threads;
start();
return status_ok();
}
-bool neuralnet_tracker::load_and_initialize_model()
+bool NeuralNetTracker::load_and_initialize_model()
{
const QString localizer_model_path_enc =
OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx";
- const QString poseestimator_model_path_enc =
- OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-pose.onnx";
+ const QString poseestimator_model_path_enc = get_posenet_filename();
try
{
- env = Ort::Env{
+ env_ = Ort::Env{
OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR,
"tracker-neuralnet"
};
auto opts = Ort::SessionOptions{};
// Do thread settings here do anything?
// There is a warning which says to control number of threads via
- // openmp settings. Which is what we do. omp_set_num_threads directly
- // before running the inference pass.
- opts.SetIntraOpNumThreads(num_threads);
- opts.SetInterOpNumThreads(num_threads);
- opts.SetGraphOptimizationLevel(
- GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
-
- opts.EnableCpuMemArena();
- allocator_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
-
- localizer.emplace(
- allocator_info,
- Ort::Session{env, convert(localizer_model_path_enc).c_str(), opts});
-
- poseestimator.emplace(
- allocator_info,
- Ort::Session{env, convert(poseestimator_model_path_enc).c_str(), opts});
+ // openmp settings. Which is what we do.
+ opts.SetIntraOpNumThreads(num_threads_);
+ opts.SetInterOpNumThreads(1);
+ allocator_info_ = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
+
+ localizer_.emplace(
+ allocator_info_,
+ Ort::Session{env_, convert(localizer_model_path_enc).c_str(), opts});
+
+ qDebug() << "Loading pose net " << poseestimator_model_path_enc;
+ poseestimator_.emplace(
+ allocator_info_,
+ Ort::Session{env_, convert(poseestimator_model_path_enc).c_str(), opts});
}
catch (const Ort::Exception &e)
{
- qDebug() << "Failed to initialize the neural network models. ONNX error message: "
+ qDebug() << "Failed to initialize the neural network models. ONNX error message: "
<< e.what();
return false;
}
+ catch (const std::exception &e)
+ {
+ qDebug() << "Failed to initialize the neural network models. Error message: " << e.what();
+ return false;
+ }
+
return true;
}
-bool neuralnet_tracker::open_camera()
+bool NeuralNetTracker::open_camera()
{
- int fps = enum_to_fps(s.force_fps);
+ int rint = std::clamp(*settings_.resolution, 0, (int)std::size(resolution_choices)-1);
+ resolution_tuple res = resolution_choices[rint];
+ int fps = enum_to_fps(settings_.force_fps);
- QMutexLocker l(&camera_mtx);
+ QMutexLocker l(&camera_mtx_);
- camera = video::make_camera(s.camera_name);
+ camera_ = video::make_camera(settings_.camera_name);
- if (!camera)
+ if (!camera_)
return false;
video::impl::camera::info args {};
- args.width = 320;
- args.height = 240;
-
+ if (res.width)
+ {
+ args.width = res.width;
+ args.height = res.height;
+ }
if (fps)
args.fps = fps;
- if (!camera->start(args))
+ args.use_mjpeg = settings_.use_mjpeg;
+
+ if (!camera_->start(args))
{
qDebug() << "neuralnet tracker: can't open camera";
return false;
}
- return true;
-}
-
-
-void neuralnet_tracker::set_intrinsics()
-{
- const int w = grayscale.cols, h = grayscale.rows;
- const double diag_fov = s.fov * M_PI / 180.;
- const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w));
- const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h));
- const double focal_length_w = 1. / tan(.5 * fov_w);
- const double focal_length_h = 1. / tan(.5 * fov_h);
- intrinsics.fov_h = fov_h;
- intrinsics.fov_w = fov_w;
- intrinsics.focal_length_w = focal_length_w;
- intrinsics.focal_length_h = focal_length_h;
+ return true;
}
-vec3 neuralnet_tracker::image_to_world(float x, float y, float size, float real_size) const
+void NeuralNetTracker::run()
{
- // Compute the location the network outputs in 3d space.
- const float xpos = -(intrinsics.focal_length_w * frame.cols * 0.5f) / size * real_size;
- const float zpos = (x / frame.cols * 2.f - 1.f) * xpos / intrinsics.focal_length_w;
- const float ypos = (y / frame.rows * 2.f - 1.f) * xpos / intrinsics.focal_length_h;
- return {xpos, ypos, zpos};
-}
+ preview_.init(*video_widget_);
+ GuardedThreadCountSwitch switch_num_threads_to(num_threads_);
-vec2 neuralnet_tracker::world_to_image(const vec3& pos) const
-{
- const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w;
- const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h;
- const float x = (xscr+1.)*0.5f*frame.cols;
- const float y = (yscr+1.)*0.5f*frame.rows;
- return {x, y};
-}
-
-
-void neuralnet_tracker::run()
-{
if (!open_camera())
return;
@@ -655,11 +579,12 @@ void neuralnet_tracker::run()
while (!isInterruptionRequested())
{
+ is_visible_ = check_is_visible();
auto t = clk.now();
{
- QMutexLocker l(&camera_mtx);
+ QMutexLocker l(&camera_mtx_);
- auto [ img, res ] = camera->get_frame();
+ auto [ img, res ] = camera_->get_frame();
if (!res)
{
@@ -668,16 +593,24 @@ void neuralnet_tracker::run()
continue;
}
- auto color = cv::Mat(img.height, img.width, CV_8UC(img.channels), (void*)img.data, img.stride);
- color.copyTo(frame);
+ {
+ QMutexLocker lck{&stats_mtx_};
+ resolution_ = { img.width, img.height };
+ }
+
+ auto color = prepare_input_image(img);
+
+ if (is_visible_)
+ preview_.copy_video_frame(color);
switch (img.channels)
{
case 1:
- grayscale.setTo(color);
+ grayscale_.create(img.height, img.width, CV_8UC1);
+ color.copyTo(grayscale_);
break;
case 3:
- cv::cvtColor(color, grayscale, cv::COLOR_BGR2GRAY);
+ cv::cvtColor(color, grayscale_, cv::COLOR_BGR2GRAY);
break;
default:
qDebug() << "Can't handle" << img.channels << "color channels";
@@ -685,13 +618,13 @@ void neuralnet_tracker::run()
}
}
- set_intrinsics();
+ intrinsics_ = make_intrinsics(grayscale_, settings_);
detect();
- if (frame.rows > 0)
- videoWidget->update_image(frame);
-
+ if (is_visible_)
+ preview_.copy_to_widget(*video_widget_);
+
update_fps(
std::chrono::duration_cast<std::chrono::milliseconds>(
clk.now() - t).count()*1.e-3);
@@ -699,40 +632,71 @@ void neuralnet_tracker::run()
}
-void neuralnet_tracker::update_fps(double dt)
+cv::Mat NeuralNetTracker::prepare_input_image(const video::frame& frame)
{
- const double alpha = dt/(dt + RC);
+ auto img = cv::Mat(frame.height, frame.width, CV_8UC(frame.channels), (void*)frame.data, frame.stride);
- if (dt > 1e-6)
+ // Crop if aspect ratio is not 4:3
+ if (img.rows*4 != img.cols*3)
+ {
+ img = img(make_crop_rect_for_aspect(img.size(), 4, 3));
+ }
+
+ img = img(make_crop_rect_multiple_of(img.size(), 4));
+
+ if (img.cols > 640)
+ {
+ cv::pyrDown(img, downsized_original_images_[0]);
+ img = downsized_original_images_[0];
+ }
+ if (img.cols > 640)
{
- fps *= 1 - alpha;
- fps += alpha * 1./dt;
+ cv::pyrDown(img, downsized_original_images_[1]);
+ img = downsized_original_images_[1];
}
- max_frame_time = std::max(max_frame_time, dt);
+ return img;
+}
+
+
+void NeuralNetTracker::update_fps(double dt)
+{
+ const double alpha = dt/(dt + RC);
+ if (dt > 1e-6)
+ {
+ QMutexLocker lck{&stats_mtx_};
+ fps_ *= 1 - alpha;
+ fps_ += alpha * 1./dt;
+ }
}
-void neuralnet_tracker::data(double *data)
+void NeuralNetTracker::data(double *data)
{
Affine tmp = [&]()
{
- QMutexLocker lck(&mtx);
- return pose_;
+ QMutexLocker lck(&mtx_);
+ return last_pose_affine_;
}();
const auto& mx = tmp.R.col(0);
const auto& my = tmp.R.col(1);
- const auto& mz = -tmp.R.col(2);
+ const auto& mz = tmp.R.col(2);
+ // For reference: https://en.wikipedia.org/wiki/Euler_angles. Section "Rotation matrix". The relevant matrix is
+ // under "Tait-Bryan angles", row with "Y_alpha Z_beta X_gamma = ...".
+ // Because for the NN tracker x is forward, and y is up. We can see that the x axis is independent of roll. Thus it
+ // is relatively easy to figure out the yaw and pitch angles (alpha and beta).
const float yaw = std::atan2(mx(2), mx(0));
const float pitch = -std::atan2(-mx(1), std::sqrt(mx(2)*mx(2)+mx(0)*mx(0)));
- const float roll = std::atan2(-my(2), mz(2));
+ // For the roll angle we recognize that the matrix entries in the second row contain cos(pitch)*cos(roll), and
+ // cos(pitch)*sin(roll). Using atan2 eliminates the common pitch factor and we obtain the roll angle.
+ const float roll = std::atan2(-mz(1), my(1));
{
constexpr double rad2deg = 180/M_PI;
data[Yaw] = rad2deg * yaw;
data[Pitch] = rad2deg * pitch;
- data[Roll] = rad2deg * roll;
+ data[Roll] = -rad2deg * roll;
// convert to cm
data[TX] = -tmp.t[2] * 0.1;
@@ -742,112 +706,185 @@ void neuralnet_tracker::data(double *data)
}
-Affine neuralnet_tracker::pose()
+Affine NeuralNetTracker::pose()
+{
+ QMutexLocker lck(&mtx_);
+ return last_pose_affine_;
+}
+
+
+std::tuple<cv::Size,double, double> NeuralNetTracker::stats() const
{
- QMutexLocker lck(&mtx);
- return pose_;
+ QMutexLocker lck(&stats_mtx_);
+ return { resolution_, fps_, inference_time_ };
}
-void neuralnet_dialog::make_fps_combobox()
+QString NeuralNetTracker::get_posenet_filename() const
+{
+ QString filename = settings_.posenet_file;
+ if (QFileInfo(filename).isRelative())
+ filename = get_default_model_directory().absoluteFilePath(filename);
+ return filename;
+}
+
+
+void NeuralNetDialog::make_fps_combobox()
{
for (int k = 0; k < fps_MAX; k++)
{
const int hz = enum_to_fps(k);
const QString name = (hz == 0) ? tr("Default") : QString::number(hz);
- ui.cameraFPS->addItem(name, k);
+ ui_.cameraFPS->addItem(name, k);
+ }
+}
+
+void NeuralNetDialog::make_resolution_combobox()
+{
+ int k=0;
+ for (const auto [w, h] : resolution_choices)
+ {
+ const QString s = (w == 0)
+ ? tr("Default")
+ : QString::number(w) + " x " + QString::number(h);
+ ui_.resolution->addItem(s, k++);
}
}
-neuralnet_dialog::neuralnet_dialog() :
- trans_calib(1, 2)
+NeuralNetDialog::NeuralNetDialog() :
+ trans_calib_(1, 2)
{
- ui.setupUi(this);
+ ui_.setupUi(this);
make_fps_combobox();
- tie_setting(s.force_fps, ui.cameraFPS);
+ make_resolution_combobox();
for (const auto& str : video::camera_names())
- ui.cameraName->addItem(str);
+ ui_.cameraName->addItem(str);
- tie_setting(s.camera_name, ui.cameraName);
- tie_setting(s.fov, ui.cameraFOV);
- tie_setting(s.offset_fwd, ui.tx_spin);
- tie_setting(s.offset_up, ui.ty_spin);
- tie_setting(s.offset_right, ui.tz_spin);
- tie_setting(s.show_network_input, ui.showNetworkInput);
+ tie_setting(settings_.camera_name, ui_.cameraName);
+ tie_setting(settings_.fov, ui_.cameraFOV);
+ tie_setting(settings_.offset_fwd, ui_.tx_spin);
+ tie_setting(settings_.offset_up, ui_.ty_spin);
+ tie_setting(settings_.offset_right, ui_.tz_spin);
+ tie_setting(settings_.show_network_input, ui_.showNetworkInput);
+ tie_setting(settings_.roi_filter_alpha, ui_.roiFilterAlpha);
+ tie_setting(settings_.use_mjpeg, ui_.use_mjpeg);
+ tie_setting(settings_.roi_zoom, ui_.roiZoom);
+ tie_setting(settings_.num_threads, ui_.threadCount);
+ tie_setting(settings_.resolution, ui_.resolution);
+ tie_setting(settings_.force_fps, ui_.cameraFPS);
+ tie_setting(settings_.posenet_file, ui_.posenetFileDisplay);
- connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
- connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
- connect(ui.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));
+ connect(ui_.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
+ connect(ui_.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
+ connect(ui_.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));
+ connect(ui_.posenetSelectButton, SIGNAL(clicked()), this, SLOT(onSelectPoseNetFile()));
+ connect(&settings_.camera_name, value_::value_changed<QString>(), this, &NeuralNetDialog::update_camera_settings_state);
- connect(&s.camera_name, value_::value_changed<QString>(), this, &neuralnet_dialog::update_camera_settings_state);
+ update_camera_settings_state(settings_.camera_name);
- update_camera_settings_state(s.camera_name);
+ connect(&calib_timer_, &QTimer::timeout, this, &NeuralNetDialog::trans_calib_step);
+ calib_timer_.setInterval(35);
+ connect(ui_.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
+
+ connect(&tracker_status_poll_timer_, &QTimer::timeout, this, &NeuralNetDialog::status_poll);
+ tracker_status_poll_timer_.setInterval(250);
+ tracker_status_poll_timer_.start();
+}
- connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step);
- calib_timer.setInterval(35);
- connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
+void NeuralNetDialog::save()
+{
+ settings_.b->save();
}
+void NeuralNetDialog::reload()
+{
+ settings_.b->reload();
+}
-void neuralnet_dialog::doOK()
+void NeuralNetDialog::doOK()
{
- s.b->save();
+ save();
close();
}
-void neuralnet_dialog::doCancel()
+void NeuralNetDialog::doCancel()
{
close();
}
-void neuralnet_dialog::camera_settings()
+void NeuralNetDialog::camera_settings()
{
- if (tracker)
+ if (tracker_)
{
- QMutexLocker l(&tracker->camera_mtx);
- (void)tracker->camera->show_dialog();
+ QMutexLocker l(&tracker_->camera_mtx_);
+ (void)tracker_->camera_->show_dialog();
}
else
- (void)video::show_dialog(s.camera_name);
+ (void)video::show_dialog(settings_.camera_name);
}
-void neuralnet_dialog::update_camera_settings_state(const QString& name)
+void NeuralNetDialog::update_camera_settings_state(const QString& name)
{
(void)name;
- ui.camera_settings->setEnabled(true);
+ ui_.camera_settings->setEnabled(true);
}
-void neuralnet_dialog::register_tracker(ITracker * x)
+void NeuralNetDialog::register_tracker(ITracker * x)
{
- tracker = static_cast<neuralnet_tracker*>(x);
- ui.tcalib_button->setEnabled(true);
+ tracker_ = static_cast<NeuralNetTracker*>(x);
+ ui_.tcalib_button->setEnabled(true);
}
-void neuralnet_dialog::unregister_tracker()
+void NeuralNetDialog::unregister_tracker()
{
- tracker = nullptr;
- ui.tcalib_button->setEnabled(false);
+ tracker_ = nullptr;
+ ui_.tcalib_button->setEnabled(false);
}
+bool NeuralNetDialog::embeddable() noexcept
+{
+ return true;
+}
-void neuralnet_dialog::trans_calib_step()
+void NeuralNetDialog::set_buttons_visible(bool x)
{
- if (tracker)
+ ui_.buttonBox->setVisible(x);
+}
+
+void NeuralNetDialog::status_poll()
+{
+ QString status;
+ if (!tracker_)
+ {
+ status = tr("Tracker Offline");
+ }
+ else
{
- const Affine X_CM = [&]() {
- QMutexLocker l(&calibrator_mutex);
- return tracker->pose();
+ auto [ res, fps, inference_time ] = tracker_->stats();
+ status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(inference_time, 0, 'f', 1);
+ }
+ ui_.resolution_display->setText(status);
+}
+
+
+void NeuralNetDialog::trans_calib_step()
+{
+ if (tracker_)
+ {
+ const Affine X_CM = [&]() {
+ QMutexLocker l(&calibrator_mutex_);
+ return tracker_->pose();
}();
- trans_calib.update(X_CM.R, X_CM.t);
- auto [_, nsamples] = trans_calib.get_estimate();
+ trans_calib_.update(X_CM.R, X_CM.t);
+ auto [_, nsamples] = trans_calib_.get_estimate();
constexpr int min_yaw_samples = 15;
constexpr int min_pitch_samples = 12;
@@ -866,52 +903,77 @@ void neuralnet_dialog::trans_calib_step()
const int nsamples_total = nsamples[0] + nsamples[1];
sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples);
}
- ui.sample_count_display->setText(sample_feedback);
+ ui_.sample_count_display->setText(sample_feedback);
}
else
startstop_trans_calib(false);
}
-void neuralnet_dialog::startstop_trans_calib(bool start)
+void NeuralNetDialog::startstop_trans_calib(bool start)
{
- QMutexLocker l(&calibrator_mutex);
- // FIXME: does not work ...
+ QMutexLocker l(&calibrator_mutex_);
+ // FIXME: does not work ...
if (start)
{
qDebug() << "pt: starting translation calibration";
- calib_timer.start();
- trans_calib.reset();
- ui.sample_count_display->setText(QString());
+ calib_timer_.start();
+ trans_calib_.reset();
+ ui_.sample_count_display->setText(QString());
// Tracker must run with zero'ed offset for calibration.
- s.offset_fwd = 0;
- s.offset_up = 0;
- s.offset_right = 0;
+ settings_.offset_fwd = 0;
+ settings_.offset_up = 0;
+ settings_.offset_right = 0;
}
else
{
- calib_timer.stop();
+ calib_timer_.stop();
qDebug() << "pt: stopping translation calibration";
{
- auto [tmp, nsamples] = trans_calib.get_estimate();
- s.offset_fwd = int(tmp[0]);
- s.offset_up = int(tmp[1]);
- s.offset_right = int(tmp[2]);
+ auto [tmp, nsamples] = trans_calib_.get_estimate();
+ settings_.offset_fwd = int(tmp[0]);
+ settings_.offset_up = int(tmp[1]);
+ settings_.offset_right = int(tmp[2]);
}
}
- ui.tx_spin->setEnabled(!start);
- ui.ty_spin->setEnabled(!start);
- ui.tz_spin->setEnabled(!start);
+ ui_.tx_spin->setEnabled(!start);
+ ui_.ty_spin->setEnabled(!start);
+ ui_.tz_spin->setEnabled(!start);
if (start)
- ui.tcalib_button->setText(tr("Stop calibration"));
+ ui_.tcalib_button->setText(tr("Stop calibration"));
else
- ui.tcalib_button->setText(tr("Start calibration"));
+ ui_.tcalib_button->setText(tr("Start calibration"));
+}
+
+
+void NeuralNetDialog::onSelectPoseNetFile()
+{
+ const auto root = get_default_model_directory();
+ // Start with the current setting
+ QString filename = settings_.posenet_file;
+ // If the filename is relative then assume that the file is located under the
+ // model directory. Under regular use this should always be the case.
+ if (QFileInfo(filename).isRelative())
+ filename = root.absoluteFilePath(filename);
+ filename = QFileDialog::getOpenFileName(this,
+ tr("Select Pose Net ONNX"), filename, tr("ONNX Files (*.onnx)"));
+ // In case the user aborted.
+ if (filename.isEmpty())
+ return;
+ // When a file under the model directory was selected we can get rid of the
+ // directory prefix. This is more robust than storing absolute paths, e.g.
+ // in case the user moves the opentrack install folder / reuses old settings.
+ // When the file is not in the model directory, we have to use the absolute path,
+ // which is also fine as developer feature.
+ if (filename.startsWith(root.absolutePath()))
+ filename = root.relativeFilePath(filename);
+ settings_.posenet_file = filename;
}
-settings::settings() : opts("neuralnet-tracker") {}
+Settings::Settings() : opts("neuralnet-tracker") {}
} // neuralnet_tracker_ns
-OPENTRACK_DECLARE_TRACKER(neuralnet_tracker, neuralnet_dialog, neuralnet_metadata)
+OPENTRACK_DECLARE_TRACKER(NeuralNetTracker, NeuralNetDialog, NeuralNetMetadata)
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.h b/tracker-neuralnet/ftnoir_tracker_neuralnet.h
index e26689a4..ce85dcd5 100644
--- a/tracker-neuralnet/ftnoir_tracker_neuralnet.h
+++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.h
@@ -7,11 +7,15 @@
#pragma once
+#include "ui_neuralnet-trackercontrols.h"
+#include "model_adapters.h"
+#include "deadzone_filter.h"
+#include "preview.h"
+
#include "options/options.hpp"
#include "api/plugin-api.hpp"
#include "cv/video-widget.hpp"
#include "cv/translation-calibrator.hpp"
-#include "cv/numeric.hpp"
#include "compat/timer.hpp"
#include "video/camera.hpp"
#include "cv/affine.hpp"
@@ -25,14 +29,11 @@
#include <memory>
#include <cinttypes>
-
-#include <onnxruntime_cxx_api.h>
+#include <array>
#include <opencv2/core.hpp>
-#include <opencv2/core/types.hpp>
#include <opencv2/imgproc.hpp>
-#include "ui_neuralnet-trackercontrols.h"
namespace neuralnet_tracker_ns
{
@@ -46,11 +47,36 @@ enum fps_choices
fps_default = 0,
fps_30 = 1,
fps_60 = 2,
- fps_MAX = 3
+ fps_75 = 3,
+ fps_125 = 4,
+ fps_200 = 5,
+ fps_50 = 6,
+ fps_100 = 7,
+ fps_120 = 8,
+ fps_300 = 9,
+ fps_250 = 10,
+ fps_MAX = 11,
};
+struct resolution_tuple
+{
+ int width;
+ int height;
+};
+
+static const std::array<resolution_tuple, 7> resolution_choices =
+{{
+ { 320, 240 },
+ { 640, 480 },
+ { 800, 600 },
+ { 1024, 768 },
+ { 1280, 720 },
+ { 1920, 1080},
+ { 0, 0 }
+}};
+
-struct settings : opts {
+struct Settings : opts {
value<int> offset_fwd { b, "offset-fwd", 200 }, // Millimeters
offset_up { b, "offset-up", 0 },
offset_right { b, "offset-right", 0 };
@@ -58,7 +84,15 @@ struct settings : opts {
value<int> fov { b, "field-of-view", 56 };
value<fps_choices> force_fps { b, "force-fps", fps_default };
value<bool> show_network_input { b, "show-network-input", false };
- settings();
+ value<double> roi_filter_alpha{ b, "roi-filter-alpha", 1. };
+ value<double> roi_zoom{ b, "roi-zoom", 1. };
+ value<bool> use_mjpeg { b, "use-mjpeg", false };
+ value<int> num_threads { b, "num-threads", 1 };
+ value<int> resolution { b, "force-resolution", 0 };
+ value<double> deadzone_size { b, "deadzone-size", 1. };
+ value<double> deadzone_hardness { b, "deadzone-hardness", 1.5 };
+ value<QString> posenet_file { b, "posenet-file", "head-pose-0.3-big-quantized.onnx" };
+ Settings();
};
@@ -71,152 +105,107 @@ struct CamIntrinsics
};
-class Localizer
-{
- public:
- Localizer(Ort::MemoryInfo &allocator_info,
- Ort::Session &&session);
-
- // Returns bounding wrt image coordinate of the input image
- // The preceeding float is the score for being a face normalized to [0,1].
- std::pair<float, cv::Rect2f> run(
- const cv::Mat &frame);
-
- private:
- inline static constexpr int input_img_width = 288;
- inline static constexpr int input_img_height = 224;
- Ort::Session session{nullptr};
- // Inputs / outputs
- cv::Mat scaled_frame{}, input_mat{};
- Ort::Value input_val{nullptr}, output_val{nullptr};
- std::array<float, 5> results;
-};
-
-
-class PoseEstimator
-{
- public:
- struct Face
- {
- std::array<float,4> rotation; // Quaternion, (w, x, y, z)
- // The following quantities are defined wrt the image space of the input
- cv::Rect2f box;
- cv::Point2f center;
- float size;
- };
-
- PoseEstimator(Ort::MemoryInfo &allocator_info,
- Ort::Session &&session);
- // Inference
- std::optional<Face> run(const cv::Mat &frame, const cv::Rect &box);
- // Returns an image compatible with the 'frame' image for displaying.
- cv::Mat last_network_input() const;
-
- private:
- // Operates on the private image data members
- int find_input_intensity_90_pct_quantile() const;
-
- inline static constexpr int input_img_width = 129;
- inline static constexpr int input_img_height = 129;
- Ort::Session session{nullptr};
- // Inputs
- cv::Mat scaled_frame{}, input_mat{};
- Ort::Value input_val{nullptr};
- // Outputs
- cv::Vec<float, 3> output_coord{};
- cv::Vec<float, 4> output_quat{};
- cv::Vec<float, 4> output_box{};
- Ort::Value output_val[3] = {
- Ort::Value{nullptr},
- Ort::Value{nullptr},
- Ort::Value{nullptr}};
-};
-
-
-class neuralnet_tracker : protected virtual QThread, public ITracker
+class NeuralNetTracker : protected virtual QThread, public ITracker
{
- Q_OBJECT
+ //Q_OBJECT
public:
- neuralnet_tracker();
- ~neuralnet_tracker() override;
+ NeuralNetTracker();
+ ~NeuralNetTracker() override;
module_status start_tracker(QFrame* frame) override;
void data(double *data) override;
void run() override;
Affine pose();
+ std::tuple<cv::Size, double, double> stats() const;
- QMutex camera_mtx;
- std::unique_ptr<video::impl::camera> camera;
+ QMutex camera_mtx_;
+ std::unique_ptr<video::impl::camera> camera_;
private:
bool detect();
bool open_camera();
void set_intrinsics();
+ cv::Mat prepare_input_image(const video::frame& frame);
bool load_and_initialize_model();
void draw_gizmos(
- cv::Mat frame,
- const PoseEstimator::Face &face,
- const Affine& pose) const;
+ const std::optional<PoseEstimator::Face> &face,
+ const Affine& pose);
void update_fps(double dt);
-
- Affine compute_pose(const PoseEstimator::Face &face) const;
- numeric_types::vec3 image_to_world(float x, float y, float size, float real_size) const;
- numeric_types::vec2 world_to_image(const numeric_types::vec3& p) const;
-
- settings s;
- std::optional<Localizer> localizer;
- std::optional<PoseEstimator> poseestimator;
- Ort::Env env{nullptr};
- Ort::MemoryInfo allocator_info{nullptr};
-
- CamIntrinsics intrinsics{};
- cv::Mat frame, grayscale;
- std::optional<cv::Rect2f> last_localizer_roi;
- std::optional<cv::Rect2f> last_roi;
- static constexpr float head_size_mm = 200.f;
-
- double fps = 0;
- double max_frame_time = 0;
+ // Secretly applies filtering while computing the pose in 3d space.
+ QuatPose compute_filtered_pose(const PoseEstimator::Face &face);
+ // Compute the pose in 3d space taking the network outputs
+ QuatPose transform_to_world_pose(const cv::Quatf &face_rotation, const cv::Point2f& face_xy, const float face_size) const;
+ QString get_posenet_filename() const;
+
+ Settings settings_;
+ std::optional<Localizer> localizer_;
+ std::optional<PoseEstimator> poseestimator_;
+ Ort::Env env_{nullptr};
+ Ort::MemoryInfo allocator_info_{nullptr};
+
+ CamIntrinsics intrinsics_{};
+ cv::Mat grayscale_;
+ std::array<cv::Mat,2> downsized_original_images_ = {}; // Image pyramid
+ std::optional<cv::Rect2f> last_localizer_roi_;
+ std::optional<cv::Rect2f> last_roi_;
+ static constexpr float HEAD_SIZE_MM = 200.f; // In the vertical. Approximately.
+
+ mutable QMutex stats_mtx_;
+ double fps_ = 0;
+ double inference_time_ = 0;
+ cv::Size resolution_ = {};
+
static constexpr double RC = .25;
+ int num_threads_ = 1;
+ bool is_visible_ = true;
- QMutex mtx; // Protects the pose
- Affine pose_;
+ QMutex mtx_ = {}; // Protects the pose
+ std::optional<QuatPose> last_pose_ = {};
+ Affine last_pose_affine_ = {};
- std::unique_ptr<cv_video_widget> videoWidget;
- std::unique_ptr<QHBoxLayout> layout;
+ Preview preview_;
+ std::unique_ptr<cv_video_widget> video_widget_;
+ std::unique_ptr<QHBoxLayout> layout_;
};
-class neuralnet_dialog : public ITrackerDialog
+class NeuralNetDialog : public ITrackerDialog
{
Q_OBJECT
public:
- neuralnet_dialog();
+ NeuralNetDialog();
void register_tracker(ITracker * x) override;
void unregister_tracker() override;
+
+ bool embeddable() noexcept override;
+ void set_buttons_visible(bool x) override;
private:
void make_fps_combobox();
+ void make_resolution_combobox();
- Ui::Form ui;
- settings s;
-
+ Ui::Form ui_;
+ Settings settings_;
// Calibration code mostly taken from point tracker
- QTimer calib_timer;
- TranslationCalibrator trans_calib;
- QMutex calibrator_mutex;
-
- neuralnet_tracker* tracker = nullptr;
+ QTimer calib_timer_;
+ TranslationCalibrator trans_calib_;
+ QMutex calibrator_mutex_;
+ QTimer tracker_status_poll_timer_;
+ NeuralNetTracker* tracker_ = nullptr;
private Q_SLOTS:
+ void save() override;
+ void reload() override;
void doOK();
void doCancel();
void camera_settings();
void update_camera_settings_state(const QString& name);
void startstop_trans_calib(bool start);
void trans_calib_step();
+ void status_poll();
+ void onSelectPoseNetFile();
};
-class neuralnet_metadata : public Metadata
+class NeuralNetMetadata : public Metadata
{
Q_OBJECT
QString name() override { return QString("neuralnet tracker"); }
@@ -226,6 +215,15 @@ class neuralnet_metadata : public Metadata
} // neuralnet_tracker_ns
-using neuralnet_tracker_ns::neuralnet_tracker;
-using neuralnet_tracker_ns::neuralnet_dialog;
-using neuralnet_tracker_ns::neuralnet_metadata; \ No newline at end of file
+
+namespace neuralnet_tracker_tests
+{
+
+void run();
+
+}
+
+
+using neuralnet_tracker_ns::NeuralNetTracker;
+using neuralnet_tracker_ns::NeuralNetDialog;
+using neuralnet_tracker_ns::NeuralNetMetadata;
diff --git a/tracker-neuralnet/lang/de_DE.ts b/tracker-neuralnet/lang/de_DE.ts
new file mode 100644
index 00000000..6261eec0
--- /dev/null
+++ b/tracker-neuralnet/lang/de_DE.ts
@@ -0,0 +1,172 @@
+<?xml version="1.0" encoding="utf-8"?>
+<!DOCTYPE TS>
+<TS version="2.1" language="de_DE">
+<context>
+ <name>Form</name>
+ <message>
+ <source>Tracker settings</source>
+ <translation>Tracker-Einstellungen</translation>
+ </message>
+ <message>
+ <source>Head Center Offset</source>
+ <translation>Versatz zur Kopfmitte</translation>
+ </message>
+ <message>
+ <source>Right</source>
+ <translation>Rechts</translation>
+ </message>
+ <message>
+ <source>Forward</source>
+ <translation>Vorwärts</translation>
+ </message>
+ <message>
+ <source>Up</source>
+ <translation>Hoch</translation>
+ </message>
+ <message>
+ <source> mm</source>
+ <translation> mm</translation>
+ </message>
+ <message>
+ <source>Use only yaw and pitch while calibrating.
+Don&apos;t roll or change position.</source>
+ <translation>Während der Kalibrierung nur gieren und nicken.
+Bitte nicht rollen oder die Position ändern.</translation>
+ </message>
+ <message>
+ <source>Start calibration</source>
+ <translation>Kalibrierung starten</translation>
+ </message>
+ <message>
+ <source>Camera Configuration</source>
+ <translation>Kamera-Konfiguration</translation>
+ </message>
+ <message>
+ <source>Diagonal FOV</source>
+ <translation>Diagonales Sichtfeld</translation>
+ </message>
+ <message>
+ <source>Camera name</source>
+ <translation>Kamera-Name</translation>
+ </message>
+ <message>
+ <source>Field of view. Needed to transform the pose to world coordinates.</source>
+ <translation>Sichtfeld. Benötigt, um die Pose in Welt-Koordinaten zu übersetzen.</translation>
+ </message>
+ <message>
+ <source>The requested resolution for cases where the camera delivers maximum frame rate only for a particular resolution. The image may still be downscaled to the internal resolution.</source>
+ <translation>Die angeforderte Auflösung für Fälle, in denen die Kamera die maximale Bildrate nur bei bestimmten Auflösungen ausgibt. Das Bild wird möglicherweise weiterhin herunterskaliert auf die interne Auflösung.</translation>
+ </message>
+ <message>
+ <source>Resolution</source>
+ <translation>Auflösung</translation>
+ </message>
+ <message>
+ <source>Requested video frame rate. Actual setting may not be supported by the camera.</source>
+ <translation>Angeforderte Bildrate. Die tatsächliche Einstellungen wird von der Kamera möglicherweise nicht unterstützt.</translation>
+ </message>
+ <message>
+ <source>Frames per second</source>
+ <translation>Bilder pro Sekunde</translation>
+ </message>
+ <message>
+ <source>MJPEG</source>
+ <translation>MJPEG</translation>
+ </message>
+ <message>
+ <source>Camera settings</source>
+ <translation>Kamera-Einstellungen</translation>
+ </message>
+ <message>
+ <source>Tuning / Debug</source>
+ <translation>Tuning / Fehlersuche</translation>
+ </message>
+ <message>
+ <source>Thread Count</source>
+ <translation>Anzahl der Threads</translation>
+ </message>
+ <message>
+ <source>Number of threads. Can be used to balance the CPU load between the game and the tracker.</source>
+ <translation>Anzahl der Threads. Kann verwendet werden, um die CPU-Last zwischen Spiel und Tracker zu balancieren.</translation>
+ </message>
+ <message>
+ <source>Show the image patch that the pose estimation model sees.</source>
+ <translation>Zeigt den Bildausschnitt, den das Modell zur Posenabschätzung sieht.</translation>
+ </message>
+ <message>
+ <source>Show Network Input</source>
+ <translation>Zeige Netzwerk-Eingabe</translation>
+ </message>
+ <message>
+ <source>ROI Smoothing Alpha</source>
+ <translation>ROI-Glättungsalpha</translation>
+ </message>
+ <message>
+ <source>Amount of smoothing of the face region coordinates. Can help stabilize the pose.</source>
+ <translation>Umfang der Glättung der Gesichtkoordinaten. Kann helfen, die Pose zu stabilisieren.</translation>
+ </message>
+ <message>
+ <source>ROI Zoom</source>
+ <translation>ROI-Zoom</translation>
+ </message>
+ <message>
+ <source>Zoom factor for the face region. Applied before the patch is fed into the pose estimation model. There is a sweet spot near 1.</source>
+ <translation>Zoom-Faktor der Gesichtsregion. Wird angewendet, bevor der Bildausschnitt zum Posen-Abschätzungsmodell gesendet wird. Der Sweet-Spot liegt nahe bei 1.</translation>
+ </message>
+ <message>
+ <source>Select the pose network. Changes take affect on the next tracker start</source>
+ <translation>Wählt das Pose-Netzwerk. Die Änderungen treten beim nächsten Start des Trackers inkraft</translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation>Wähle Pose-Netzwerk ONNX</translation>
+ </message>
+ <message>
+ <source>&lt;the pose net file&gt;</source>
+ <translation>&lt;die pose netzwerk datei&gt;</translation>
+ </message>
+</context>
+<context>
+ <name>neuralnet_tracker_ns::NeuralNetDialog</name>
+ <message>
+ <source>Default</source>
+ <translation>Standard</translation>
+ </message>
+ <message>
+ <source>Tracker Offline</source>
+ <translation>Tracker offline</translation>
+ </message>
+ <message>
+ <source>%1x%2 @ %3 FPS / Inference: %4 ms</source>
+ <translation>%1x%2 @ %3 FPS / Inferenz: %4 ms</translation>
+ </message>
+ <message>
+ <source>%1 yaw samples. Yaw more to %2 samples for stable calibration.</source>
+ <translation>%1 Gieren-Proben. Weiterhin gieren bis %2 Proben für eine stabile Kalibrierung.</translation>
+ </message>
+ <message>
+ <source>%1 pitch samples. Pitch more to %2 samples for stable calibration.</source>
+ <translation>%1 Nicken-Proben. Weiterhin nicken bis %2 Proben für eine stabile Kalibrierung.</translation>
+ </message>
+ <message>
+ <source>%1 samples. Over %2, good!</source>
+ <translation>%1 Proben. Mehr als %2, gut!</translation>
+ </message>
+ <message>
+ <source>Stop calibration</source>
+ <translation>Kalibrierung stoppen</translation>
+ </message>
+ <message>
+ <source>Start calibration</source>
+ <translation>Kalibrierung starten</translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation>Wähle Pose-Netzwerk ONNX</translation>
+ </message>
+ <message>
+ <source>ONNX Files (*.onnx)</source>
+ <translation>ONNX-Dateien (*.onnx)</translation>
+ </message>
+</context>
+</TS>
diff --git a/tracker-neuralnet/lang/nl_NL.ts b/tracker-neuralnet/lang/nl_NL.ts
index fb6c3348..27da4f5a 100644
--- a/tracker-neuralnet/lang/nl_NL.ts
+++ b/tracker-neuralnet/lang/nl_NL.ts
@@ -60,14 +60,86 @@ Don&apos;t roll or change position.</source>
<source>Show Network Input</source>
<translation type="unfinished"></translation>
</message>
+ <message>
+ <source>MJPEG</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Tuning / Debug</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ROI Smoothing Alpha</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ROI Zoom</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Thread Count</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Resolution</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Field of view. Needed to transform the pose to world coordinates.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Requested video frame rate. Actual setting may not be supported by the camera.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>The requested resolution for cases where the camera delivers maximum frame rate only for a particular resolution. The image may still be downscaled to the internal resolution.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Number of threads. Can be used to balance the CPU load between the game and the tracker.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Show the image patch that the pose estimation model sees.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Amount of smoothing of the face region coordinates. Can help stabilize the pose.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Zoom factor for the face region. Applied before the patch is fed into the pose estimation model. There is a sweet spot near 1.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>&lt;the pose net file&gt;</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select the pose network. Changes take affect on the next tracker start</source>
+ <translation type="unfinished"></translation>
+ </message>
</context>
<context>
- <name>neuralnet_tracker_ns::neuralnet_dialog</name>
+ <name>neuralnet_tracker_ns::NeuralNetDialog</name>
<message>
<source>Default</source>
<translation type="unfinished">Standaard</translation>
</message>
<message>
+ <source>Tracker Offline</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>%1x%2 @ %3 FPS / Inference: %4 ms</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
<source>%1 yaw samples. Yaw more to %2 samples for stable calibration.</source>
<translation type="unfinished"></translation>
</message>
@@ -87,5 +159,13 @@ Don&apos;t roll or change position.</source>
<source>Start calibration</source>
<translation type="unfinished"></translation>
</message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ONNX Files (*.onnx)</source>
+ <translation type="unfinished"></translation>
+ </message>
</context>
</TS>
diff --git a/tracker-neuralnet/lang/ru_RU.ts b/tracker-neuralnet/lang/ru_RU.ts
index f1ba9a92..c32d4fa7 100644
--- a/tracker-neuralnet/lang/ru_RU.ts
+++ b/tracker-neuralnet/lang/ru_RU.ts
@@ -5,86 +5,169 @@
<name>Form</name>
<message>
<source>Tracker settings</source>
- <translation type="unfinished"></translation>
+ <translation>Настройки трекера</translation>
</message>
<message>
<source>Diagonal FOV</source>
- <translation type="unfinished"></translation>
+ <translation>Угол обзора</translation>
</message>
<message>
<source>Camera settings</source>
- <translation type="unfinished"></translation>
+ <translation>Настройки камеры</translation>
</message>
<message>
<source>Frames per second</source>
- <translation type="unfinished"></translation>
+ <translation>Кадры в секунду</translation>
</message>
<message>
<source>Camera name</source>
- <translation type="unfinished"></translation>
+ <translation>Камера</translation>
</message>
<message>
<source>Camera Configuration</source>
- <translation type="unfinished"></translation>
+ <translation>Конфигурация камеры</translation>
</message>
<message>
<source>Head Center Offset</source>
- <translation type="unfinished"></translation>
+ <translation>Смещение центра головы</translation>
</message>
<message>
<source> mm</source>
- <translation type="unfinished"></translation>
+ <translation> мм</translation>
</message>
<message>
<source>Use only yaw and pitch while calibrating.
Don&apos;t roll or change position.</source>
- <translation type="unfinished"></translation>
+ <translation>Поворачивайте голову влево-вправо и наклоняйте вверх-вниз.
+Не наклоняйте набок и не смещайте голову в сторону.</translation>
</message>
<message>
<source>Start calibration</source>
- <translation type="unfinished"></translation>
+ <translation>Начать калибровку</translation>
</message>
<message>
<source>Right</source>
- <translation type="unfinished"></translation>
+ <translation>Вправо</translation>
</message>
<message>
<source>Forward</source>
- <translation type="unfinished"></translation>
+ <translation>Вперед</translation>
</message>
<message>
<source>Up</source>
- <translation type="unfinished"></translation>
+ <translation>Вверх</translation>
</message>
<message>
<source>Show Network Input</source>
+ <translation>Показать входные данные</translation>
+ </message>
+ <message>
+ <source>MJPEG</source>
+ <translation>Использовать MJPEG</translation>
+ </message>
+ <message>
+ <source>Tuning / Debug</source>
+ <translation>Тонкая настройка</translation>
+ </message>
+ <message>
+ <source>ROI Smoothing Alpha</source>
+ <translation>Сглаживание ROI</translation>
+ </message>
+ <message>
+ <source>ROI Zoom</source>
+ <translation>Масштабирование ROI</translation>
+ </message>
+ <message>
+ <source>Thread Count</source>
+ <translation>Количество потоков</translation>
+ </message>
+ <message>
+ <source>Resolution</source>
+ <translation>Разрешение</translation>
+ </message>
+ <message>
+ <source>Field of view. Needed to transform the pose to world coordinates.</source>
+ <translation>Угол обзора камеры. Требуется для преобразования положения головы в глобальные координаты</translation>
+ </message>
+ <message>
+ <source>Requested video frame rate. Actual setting may not be supported by the camera.</source>
+ <translation>Частота кадров. Реальные значения могут не поддерживаться камерой.</translation>
+ </message>
+ <message>
+ <source>The requested resolution for cases where the camera delivers maximum frame rate only for a particular resolution. The image may still be downscaled to the internal resolution.</source>
+ <translation>Разрешение камеры, для тех случаев, когда быстродействие камеры максимально в определенном разрешении. Может быть масштабировано до внутреннего разрешения.</translation>
+ </message>
+ <message>
+ <source>Number of threads. Can be used to balance the CPU load between the game and the tracker.</source>
+ <translation>Количество потоков. Используется для балансировки нагрузки на процессор между игрой и трекером.</translation>
+ </message>
+ <message>
+ <source>Show the image patch that the pose estimation model sees.</source>
+ <translation>Показать изображение, используемое моделью определения позиции</translation>
+ </message>
+ <message>
+ <source>Amount of smoothing of the face region coordinates. Can help stabilize the pose.</source>
+ <translation>Сглаживание координат области лица. Может помочь стабилизировать позицию.</translation>
+ </message>
+ <message>
+ <source>Zoom factor for the face region. Applied before the patch is fed into the pose estimation model. There is a sweet spot near 1.</source>
+ <translation>Фактор масштабирования области лица. Применяется перед передачей кадра в модель определения позиции. Наилучшие результаты близки к 1</translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>&lt;the pose net file&gt;</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select the pose network. Changes take affect on the next tracker start</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
- <name>neuralnet_tracker_ns::neuralnet_dialog</name>
+ <name>neuralnet_tracker_ns::NeuralNetDialog</name>
<message>
<source>Default</source>
- <translation type="unfinished"></translation>
+ <translation>По умолчанию</translation>
+ </message>
+ <message>
+ <source>Tracker Offline</source>
+ <translation>Трекер выключен</translation>
+ </message>
+ <message>
+ <source>%1x%2 @ %3 FPS / Inference: %4 ms</source>
+ <translation>%1x%2 @ %3 FPS; Время оценки: %4 мс</translation>
</message>
<message>
<source>%1 yaw samples. Yaw more to %2 samples for stable calibration.</source>
- <translation type="unfinished"></translation>
+ <translation>Сэмплов поворота: %1.
+Поворачивайте голову в стороны до %2 сэмплов для стабильной калибрации.</translation>
</message>
<message>
<source>%1 pitch samples. Pitch more to %2 samples for stable calibration.</source>
- <translation type="unfinished"></translation>
+ <translation>Сэмплов наклона: %1.
+Наклоняйте голову вниз/вверх до %2 сэмплов для стабильной калибрации.</translation>
</message>
<message>
<source>%1 samples. Over %2, good!</source>
- <translation type="unfinished"></translation>
+ <translation>%1 сэмплов. Более %2, достаточно.</translation>
</message>
<message>
<source>Stop calibration</source>
- <translation type="unfinished"></translation>
+ <translation>Остановить калибровку</translation>
</message>
<message>
<source>Start calibration</source>
+ <translation>Начать калибровку</translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ONNX Files (*.onnx)</source>
<translation type="unfinished"></translation>
</message>
</context>
diff --git a/tracker-neuralnet/lang/stub.ts b/tracker-neuralnet/lang/stub.ts
index 52b8aded..9609f05e 100644
--- a/tracker-neuralnet/lang/stub.ts
+++ b/tracker-neuralnet/lang/stub.ts
@@ -60,14 +60,86 @@ Don&apos;t roll or change position.</source>
<source>Show Network Input</source>
<translation type="unfinished"></translation>
</message>
+ <message>
+ <source>MJPEG</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Tuning / Debug</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ROI Smoothing Alpha</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ROI Zoom</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Thread Count</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Resolution</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Field of view. Needed to transform the pose to world coordinates.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Requested video frame rate. Actual setting may not be supported by the camera.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>The requested resolution for cases where the camera delivers maximum frame rate only for a particular resolution. The image may still be downscaled to the internal resolution.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Number of threads. Can be used to balance the CPU load between the game and the tracker.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Show the image patch that the pose estimation model sees.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Amount of smoothing of the face region coordinates. Can help stabilize the pose.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Zoom factor for the face region. Applied before the patch is fed into the pose estimation model. There is a sweet spot near 1.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>&lt;the pose net file&gt;</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select the pose network. Changes take affect on the next tracker start</source>
+ <translation type="unfinished"></translation>
+ </message>
</context>
<context>
- <name>neuralnet_tracker_ns::neuralnet_dialog</name>
+ <name>neuralnet_tracker_ns::NeuralNetDialog</name>
<message>
<source>Default</source>
<translation type="unfinished"></translation>
</message>
<message>
+ <source>Tracker Offline</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>%1x%2 @ %3 FPS / Inference: %4 ms</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
<source>%1 yaw samples. Yaw more to %2 samples for stable calibration.</source>
<translation type="unfinished"></translation>
</message>
@@ -87,5 +159,13 @@ Don&apos;t roll or change position.</source>
<source>Start calibration</source>
<translation type="unfinished"></translation>
</message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ONNX Files (*.onnx)</source>
+ <translation type="unfinished"></translation>
+ </message>
</context>
</TS>
diff --git a/tracker-neuralnet/lang/zh_CN.ts b/tracker-neuralnet/lang/zh_CN.ts
index 2d0dd8ff..53da04ae 100644
--- a/tracker-neuralnet/lang/zh_CN.ts
+++ b/tracker-neuralnet/lang/zh_CN.ts
@@ -1,35 +1,35 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE TS>
-<TS version="2.1">
+<TS version="2.1" language="zh_CN">
<context>
<name>Form</name>
<message>
<source>Tracker settings</source>
- <translation type="unfinished"></translation>
+ <translation>追踪器设置</translation>
</message>
<message>
<source>Diagonal FOV</source>
- <translation type="unfinished"></translation>
+ <translation>对角FOV</translation>
</message>
<message>
<source>Camera name</source>
- <translation type="unfinished"></translation>
+ <translation>相机名</translation>
</message>
<message>
<source>Frames per second</source>
- <translation type="unfinished"></translation>
+ <translation>FPS</translation>
</message>
<message>
<source>Camera settings</source>
- <translation type="unfinished"></translation>
+ <translation>相机设置</translation>
</message>
<message>
<source>Camera Configuration</source>
- <translation type="unfinished"></translation>
+ <translation>相机配置</translation>
</message>
<message>
<source>Head Center Offset</source>
- <translation type="unfinished"></translation>
+ <translation>头部归中补偿</translation>
</message>
<message>
<source> mm</source>
@@ -38,34 +38,107 @@
<message>
<source>Use only yaw and pitch while calibrating.
Don&apos;t roll or change position.</source>
- <translation type="unfinished"></translation>
+ <translation>在校准时只使用偏航和俯仰,
+不要滚转或是改变位置. </translation>
</message>
<message>
<source>Start calibration</source>
- <translation type="unfinished"></translation>
+ <translation>开始校准</translation>
</message>
<message>
<source>Right</source>
- <translation type="unfinished"></translation>
+ <translation>向右</translation>
</message>
<message>
<source>Forward</source>
- <translation type="unfinished"></translation>
+ <translation>向前</translation>
</message>
<message>
<source>Up</source>
- <translation type="unfinished"></translation>
+ <translation>向上</translation>
</message>
<message>
<source>Show Network Input</source>
+ <translation>展示神经网络输入</translation>
+ </message>
+ <message>
+ <source>MJPEG</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Tuning / Debug</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ROI Smoothing Alpha</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ROI Zoom</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Thread Count</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Resolution</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Field of view. Needed to transform the pose to world coordinates.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Requested video frame rate. Actual setting may not be supported by the camera.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>The requested resolution for cases where the camera delivers maximum frame rate only for a particular resolution. The image may still be downscaled to the internal resolution.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Number of threads. Can be used to balance the CPU load between the game and the tracker.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Show the image patch that the pose estimation model sees.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Amount of smoothing of the face region coordinates. Can help stabilize the pose.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Zoom factor for the face region. Applied before the patch is fed into the pose estimation model. There is a sweet spot near 1.</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select the pose network. Changes take affect on the next tracker start</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>&lt;the pose net file&gt;</source>
<translation type="unfinished"></translation>
</message>
</context>
<context>
- <name>neuralnet_tracker_ns::neuralnet_dialog</name>
+ <name>neuralnet_tracker_ns::NeuralNetDialog</name>
<message>
<source>Default</source>
- <translation type="unfinished"></translation>
+ <translation>默认</translation>
+ </message>
+ <message>
+ <source>Tracker Offline</source>
+ <translation>追踪器离线</translation>
+ </message>
+ <message>
+ <source>%1x%2 @ %3 FPS / Inference: %4 ms</source>
+ <translation>%1x%2 @ %3 FPS / 推理: %4 ms</translation>
</message>
<message>
<source>%1 yaw samples. Yaw more to %2 samples for stable calibration.</source>
@@ -81,10 +154,18 @@ Don&apos;t roll or change position.</source>
</message>
<message>
<source>Stop calibration</source>
- <translation type="unfinished"></translation>
+ <translation>结束校准</translation>
</message>
<message>
<source>Start calibration</source>
+ <translation>开始校准</translation>
+ </message>
+ <message>
+ <source>Select Pose Net ONNX</source>
+ <translation type="unfinished"></translation>
+ </message>
+ <message>
+ <source>ONNX Files (*.onnx)</source>
<translation type="unfinished"></translation>
</message>
</context>
diff --git a/tracker-neuralnet/model_adapters.cpp b/tracker-neuralnet/model_adapters.cpp
new file mode 100644
index 00000000..f53478af
--- /dev/null
+++ b/tracker-neuralnet/model_adapters.cpp
@@ -0,0 +1,416 @@
+#include "model_adapters.h"
+
+#include "compat/timer.hpp"
+
+#include <opencv2/core.hpp>
+#include <opencv2/core/quaternion.hpp>
+#include <opencv2/imgproc.hpp>
+
+#include <QDebug>
+
+namespace neuralnet_tracker_ns
+{
+
+
+float sigmoid(float x)
+{
+ return 1.f/(1.f + std::exp(-x));
+}
+
+
+// Defined in ftnoir_tracker_neuralnet.cpp
+// Normally we wouldn't need it here. However ... see below.
+cv::Quatf image_to_world(cv::Quatf q);
+
+
+cv::Quatf world_to_image(cv::Quatf q)
+{
+ // It's its own inverse.
+ return image_to_world(q);
+}
+
+
+cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w)
+{
+ auto unnorm = [](float x) -> float { return 0.5*(x+1); };
+ auto tl = r.tl();
+ auto br = r.br();
+ auto x0 = unnorm(tl.x)*w;
+ auto y0 = unnorm(tl.y)*h;
+ auto x1 = unnorm(br.x)*w;
+ auto y1 = unnorm(br.y)*h;
+ return {
+ x0, y0, x1-x0, y1-y0
+ };
+}
+
+
+// Returns width and height of the input tensor, or throws.
+// Expects the model to take one tensor as input that must
+// have the shape B x C x H x W, where B=C=1.
+cv::Size get_input_image_shape(const Ort::Session &session)
+{
+ if (session.GetInputCount() < 1)
+ throw std::invalid_argument("Model must take at least one input tensor");
+ const std::vector<std::int64_t> shape =
+ session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
+ if (shape.size() != 4)
+ throw std::invalid_argument("Model takes the input tensor in the wrong shape");
+ return { static_cast<int>(shape[3]), static_cast<int>(shape[2]) };
+}
+
+
+Ort::Value create_tensor(const Ort::TypeInfo& info, Ort::Allocator& alloc)
+{
+ const auto shape = info.GetTensorTypeAndShapeInfo().GetShape();
+ auto t = Ort::Value::CreateTensor<float>(
+ alloc, shape.data(), shape.size());
+ memset(t.GetTensorMutableData<float>(), 0, sizeof(float)*info.GetTensorTypeAndShapeInfo().GetElementCount());
+ return t;
+}
+
+
+int find_input_intensity_quantile(const cv::Mat& frame, float percentage)
+{
+ const int channels[] = { 0 };
+ const int hist_size[] = { 256 };
+ float range[] = { 0, 256 };
+ const float* ranges[] = { range };
+ cv::Mat hist;
+ cv::calcHist(&frame, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
+ int gray_level = 0;
+ const int num_pixels_quantile = frame.total()*percentage*0.01f;
+ int num_pixels_accum = 0;
+ for (int i=0; i<hist_size[0]; ++i)
+ {
+ num_pixels_accum += hist.at<float>(i);
+ if (num_pixels_accum > num_pixels_quantile)
+ {
+ gray_level = i;
+ break;
+ }
+ }
+ return gray_level;
+}
+
+
+// Automatic brightness adjustment. Scales brightness to lie between -.5 and 0.5, roughly.
+void normalize_brightness(const cv::Mat& frame, cv::Mat& out)
+{
+ const float pct = 90;
+
+ const int brightness = find_input_intensity_quantile(frame, pct);
+
+ const double alpha = brightness<127 ? (pct/100.f*0.5f/std::max(5,brightness)) : 1./255;
+ const double beta = -0.5;
+
+ frame.convertTo(out, CV_32F, alpha, beta);
+}
+
+
+
+Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
+ session_{std::move(session)},
+ scaled_frame_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_8U),
+ input_mat_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_32F)
+{
+ // Only works when input_mat does not reallocated memory ...which it should not.
+ // Non-owning memory reference to input_mat?
+ // Note: shape = (bach x channels x h x w)
+ const std::int64_t input_shape[4] = { 1, 1, INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH };
+ input_val_ = Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4);
+
+ const std::int64_t output_shape[2] = { 1, 5 };
+ output_val_ = Ort::Value::CreateTensor<float>(allocator_info, results_.data(), results_.size(), output_shape, 2);
+}
+
+
+std::pair<float, cv::Rect2f> Localizer::run(
+ const cv::Mat &frame)
+{
+ auto p = input_mat_.ptr(0);
+
+ cv::resize(frame, scaled_frame_, { INPUT_IMG_WIDTH, INPUT_IMG_HEIGHT }, 0, 0, cv::INTER_AREA);
+ scaled_frame_.convertTo(input_mat_, CV_32F, 1./255., -0.5);
+
+ assert (input_mat_.ptr(0) == p);
+ assert (!input_mat_.empty() && input_mat_.isContinuous());
+ assert (input_mat_.cols == INPUT_IMG_WIDTH && input_mat_.rows == INPUT_IMG_HEIGHT);
+
+ const char* input_names[] = {"x"};
+ const char* output_names[] = {"logit_box"};
+
+ Timer t; t.start();
+
+ session_.Run(Ort::RunOptions{nullptr}, input_names, &input_val_, 1, output_names, &output_val_, 1);
+
+ last_inference_time_ = t.elapsed_ms();
+
+ const cv::Rect2f roi = unnormalize(cv::Rect2f{
+ results_[1],
+ results_[2],
+ results_[3]-results_[1], // Width
+ results_[4]-results_[2] // Height
+ }, frame.rows, frame.cols);
+ const float score = sigmoid(results_[0]);
+
+ return { score, roi };
+}
+
+
+double Localizer::last_inference_time_millis() const
+{
+ return last_inference_time_;
+}
+
+
+std::string PoseEstimator::get_network_input_name(size_t i) const
+{
+#if ORT_API_VERSION >= 12
+ return std::string(&*session_.GetInputNameAllocated(i, allocator_));
+#else
+ return std::string(session_.GetInputName(i, allocator_));
+#endif
+}
+
+std::string PoseEstimator::get_network_output_name(size_t i) const
+{
+#if ORT_API_VERSION >= 12
+ return std::string(&*session_.GetOutputNameAllocated(i, allocator_));
+#else
+ return std::string(session_.GetOutputName(i, allocator_));
+#endif
+}
+
+PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&session)
+ : model_version_{session.GetModelMetadata().GetVersion()}
+ , session_{std::move(session)}
+ , allocator_{session_, allocator_info}
+{
+ using namespace std::literals::string_literals;
+
+ if (session_.GetOutputCount() < 2)
+ throw std::runtime_error("Invalid Model: must have at least two outputs");
+
+ // WARNING: Messy model compatibility issues!
+ // When reading the initial model release, it did not have the version field set.
+ // Reading it here will result in some unspecified value. It's probably UB due to
+ // reading uninitialized memory. But there is little choice.
+ // Now, detection of this old version is messy ... we have to guess based on the
+ // number we get. Getting an uninitialized value matching a valid version is unlikely.
+ // But the real problem is that this line must be updated whenever we want to bump the
+ // version number!!
+ if (model_version_ <= 0 || model_version_ > 4)
+ model_version_ = 1;
+
+ const cv::Size input_image_shape = get_input_image_shape(session_);
+
+ scaled_frame_ = cv::Mat(input_image_shape, CV_8U, cv::Scalar(0));
+ input_mat_ = cv::Mat(input_image_shape, CV_32F, cv::Scalar(0.f));
+
+ {
+ const std::int64_t input_shape[4] = { 1, 1, input_image_shape.height, input_image_shape.width };
+ input_val_.push_back(
+ Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4));
+ }
+
+ struct TensorSpec
+ {
+ std::vector<int64_t> shape;
+ float* buffer = nullptr;
+ size_t element_count = 0;
+ bool available = false;
+ };
+
+ std::unordered_map<std::string, TensorSpec> understood_outputs = {
+ { "pos_size", TensorSpec{ { 1, 3 }, &output_coord_[0], output_coord_.rows } },
+ { "quat", TensorSpec{ { 1, 4}, &output_quat_[0], output_quat_.rows } },
+ { "box", TensorSpec{ { 1, 4}, &output_box_[0], output_box_.rows } },
+ { "rotaxis_scales_tril", TensorSpec{ {1, 3, 3}, output_rotaxis_scales_tril_.val, 9 }},
+ { "rotaxis_std", TensorSpec{ {1, 3, 3}, output_rotaxis_scales_tril_.val, 9 }}, // TODO: Delete when old models aren't used any more
+ { "pos_size_std", TensorSpec{ {1, 3}, output_coord_scales_std_.val, output_coord_scales_std_.rows}},
+ { "pos_size_scales", TensorSpec{ {1, 3}, output_coord_scales_std_.val, output_coord_scales_std_.rows}},
+ { "pos_size_scales_tril", TensorSpec{ {1, 3, 3}, output_coord_scales_tril_.val, 9}}
+ };
+
+ qDebug() << "Pose model inputs (" << session_.GetInputCount() << ")";
+ qDebug() << "Pose model outputs (" << session_.GetOutputCount() << "):";
+ output_names_.resize(session_.GetOutputCount());
+ output_c_names_.resize(session_.GetOutputCount());
+ for (size_t i=0; i<session_.GetOutputCount(); ++i)
+ {
+ const std::string name = get_network_output_name(i);
+ const auto& output_info = session_.GetOutputTypeInfo(i);
+ const auto& onnx_tensor_spec = output_info.GetTensorTypeAndShapeInfo();
+ auto my_tensor_spec_it = understood_outputs.find(name);
+
+ qDebug() << "\t" << name.c_str() << " (" << onnx_tensor_spec.GetShape() << ") dtype: " << onnx_tensor_spec.GetElementType() << " " <<
+ (my_tensor_spec_it != understood_outputs.end() ? "ok" : "unknown");
+
+ if (my_tensor_spec_it != understood_outputs.end())
+ {
+ TensorSpec& t = my_tensor_spec_it->second;
+ if (onnx_tensor_spec.GetShape() != t.shape ||
+ onnx_tensor_spec.GetElementType() != Ort::TypeToTensorType<float>::type)
+ throw std::runtime_error("Invalid output tensor spec for "s + name);
+ output_val_.push_back(Ort::Value::CreateTensor<float>(
+ allocator_info, t.buffer, t.element_count, t.shape.data(), t.shape.size()));
+ t.available = true;
+ }
+ else
+ {
+ // Create tensor regardless and ignore output
+ output_val_.push_back(create_tensor(output_info, allocator_));
+ }
+ output_names_[i] = name;
+ output_c_names_[i] = output_names_[i].c_str();
+ }
+
+ has_uncertainty_ = understood_outputs.at("rotaxis_scales_tril").available ||
+ understood_outputs.at("rotaxis_std").available;
+ has_uncertainty_ &= understood_outputs.at("pos_size_std").available ||
+ understood_outputs.at("pos_size_scales").available ||
+ understood_outputs.at("pos_size_scales_tril").available;
+ pos_scale_uncertainty_is_matrix_ = understood_outputs.at("pos_size_scales_tril").available;
+
+ input_names_.resize(session_.GetInputCount());
+ input_c_names_.resize(session_.GetInputCount());
+ for (size_t i = 0; i < session_.GetInputCount(); ++i)
+ {
+ input_names_[i] = get_network_input_name(i);
+ input_c_names_[i] = input_names_[i].c_str();
+ }
+
+ assert (input_names_.size() == input_val_.size());
+ assert (output_names_.size() == output_val_.size());
+}
+
+
+std::optional<PoseEstimator::Face> PoseEstimator::run(
+ const cv::Mat &frame, const cv::Rect &box)
+{
+ cv::Mat cropped;
+
+ const int patch_size = std::max(box.width, box.height)*1.05;
+ const cv::Point2f patch_center = {
+ std::clamp<float>(box.x + 0.5f*box.width, 0.f, frame.cols),
+ std::clamp<float>(box.y + 0.5f*box.height, 0.f, frame.rows)
+ };
+ cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped);
+
+ // Will get failure if patch_center is outside image boundaries settings.
+ // Have to catch this case.
+ if (cropped.rows != patch_size || cropped.cols != patch_size)
+ return {};
+
+ [[maybe_unused]] auto* p = input_mat_.ptr(0);
+
+ cv::resize(cropped, scaled_frame_, scaled_frame_.size(), 0, 0, cv::INTER_AREA);
+
+ normalize_brightness(scaled_frame_, input_mat_);
+
+ assert (input_mat_.ptr(0) == p);
+ assert (!input_mat_.empty() && input_mat_.isContinuous());
+
+ Timer t; t.start();
+
+ try
+ {
+ session_.Run(
+ Ort::RunOptions{ nullptr },
+ input_c_names_.data(),
+ input_val_.data(),
+ input_val_.size(),
+ output_c_names_.data(),
+ output_val_.data(),
+ output_val_.size());
+ }
+ catch (const Ort::Exception &e)
+ {
+ qDebug() << "Failed to run the model: " << e.what();
+ return {};
+ }
+
+ last_inference_time_ = t.elapsed_ms();
+
+ // Perform coordinate transformation.
+ // From patch-local normalized in [-1,1] to
+ // frame unnormalized pixel.
+
+ cv::Matx33f center_size_cov_tril = {};
+ if (has_uncertainty_)
+ {
+ if (pos_scale_uncertainty_is_matrix_)
+ {
+ center_size_cov_tril = output_coord_scales_tril_;
+ }
+ else
+ {
+ center_size_cov_tril(0,0) = output_coord_scales_std_[0];
+ center_size_cov_tril(1,1) = output_coord_scales_std_[1];
+ center_size_cov_tril(2,2) = output_coord_scales_std_[2];
+ }
+ center_size_cov_tril *= patch_size*0.5f;
+ }
+
+ const cv::Point2f center = patch_center +
+ (0.5f*patch_size)*cv::Point2f{output_coord_[0], output_coord_[1]};
+ const float size = patch_size*0.5f*output_coord_[2];
+
+ // Following Eigen which uses quat components in the order w, x, y, z.
+ // As does OpenCV
+ cv::Quatf rotation = {
+ output_quat_[3],
+ output_quat_[0],
+ output_quat_[1],
+ output_quat_[2] };
+
+ // Should be lower triangular. If not maybe something is wrong with memory layout ... or the model.
+ assert(output_rotaxis_scales_tril_(0, 1) == 0);
+ assert(output_rotaxis_scales_tril_(0, 2) == 0);
+ assert(output_rotaxis_scales_tril_(1, 2) == 0);
+ assert(center_size_cov_tril(0, 1) == 0);
+ assert(center_size_cov_tril(0, 2) == 0);
+ assert(center_size_cov_tril(1, 2) == 0);
+
+ cv::Matx33f rotaxis_scales_tril = output_rotaxis_scales_tril_;
+
+ if (model_version_ < 2)
+ {
+ // Due to a change in coordinate conventions
+ rotation = world_to_image(rotation);
+ }
+
+ const cv::Rect2f outbox = {
+ patch_center.x + (0.5f*patch_size)*output_box_[0],
+ patch_center.y + (0.5f*patch_size)*output_box_[1],
+ 0.5f*patch_size*(output_box_[2]-output_box_[0]),
+ 0.5f*patch_size*(output_box_[3]-output_box_[1])
+ };
+
+ return std::optional<Face>({
+ rotation, rotaxis_scales_tril, outbox, center, size, center_size_cov_tril
+ });
+}
+
+
+cv::Mat PoseEstimator::last_network_input() const
+{
+ assert(!input_mat_.empty());
+ cv::Mat ret;
+ input_mat_.convertTo(ret, CV_8U, 255., 127.);
+ cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
+ return ret;
+}
+
+
+double PoseEstimator::last_inference_time_millis() const
+{
+ return last_inference_time_;
+}
+
+
+
+
+
+} // namespace neuralnet_tracker_ns
diff --git a/tracker-neuralnet/model_adapters.h b/tracker-neuralnet/model_adapters.h
new file mode 100644
index 00000000..c1aaa6de
--- /dev/null
+++ b/tracker-neuralnet/model_adapters.h
@@ -0,0 +1,105 @@
+#pragma once
+
+#include <optional>
+#include <array>
+#include <vector>
+#include <string>
+
+#include <onnxruntime_cxx_api.h>
+#include <opencv2/core.hpp>
+#include "opencv_contrib.h"
+
+
+namespace neuralnet_tracker_ns
+{
+
+// Generally useful sigmoid function
+float sigmoid(float x);
+
+
+class Localizer
+{
+ public:
+ Localizer(Ort::MemoryInfo &allocator_info,
+ Ort::Session &&session);
+
+ // Returns bounding wrt image coordinate of the input image
+ // The preceeding float is the score for being a face normalized to [0,1].
+ std::pair<float, cv::Rect2f> run(
+ const cv::Mat &frame);
+
+ double last_inference_time_millis() const;
+ private:
+ inline static constexpr int INPUT_IMG_WIDTH = 288;
+ inline static constexpr int INPUT_IMG_HEIGHT = 224;
+ Ort::Session session_{nullptr};
+ // Inputs / outputs
+ cv::Mat scaled_frame_{}, input_mat_{};
+ Ort::Value input_val_{nullptr}, output_val_{nullptr};
+ std::array<float, 5> results_;
+ double last_inference_time_ = 0;
+};
+
+
+class PoseEstimator
+{
+ public:
+ struct Face
+ {
+ cv::Quatf rotation;
+ cv::Matx33f rotaxis_cov_tril; // Lower triangular factor of Cholesky decomposition
+ cv::Rect2f box;
+ cv::Point2f center;
+ float size;
+ cv::Matx33f center_size_cov_tril; // Lower triangular factor of Cholesky decomposition
+ };
+
+ PoseEstimator(Ort::MemoryInfo &allocator_info,
+ Ort::Session &&session);
+ /** Inference
+ *
+ * Coordinates are defined wrt. the image space of the input `frame`.
+ * X goes right, Z (depth) into the image, Y points down (like pixel coordinates values increase from top to bottom)
+ */
+ std::optional<Face> run(const cv::Mat &frame, const cv::Rect &box);
+ // Returns an image compatible with the 'frame' image for displaying.
+ cv::Mat last_network_input() const;
+ double last_inference_time_millis() const;
+ bool has_uncertainty() const { return has_uncertainty_; }
+
+ private:
+ std::string get_network_input_name(size_t i) const;
+ std::string get_network_output_name(size_t i) const;
+ int64_t model_version_ = 0; // Queried meta data from the ONNX file
+ Ort::Session session_{nullptr}; // ONNX's runtime context for running the model
+ mutable Ort::Allocator allocator_; // Memory allocator for tensors
+ // Inputs
+ cv::Mat scaled_frame_{}, input_mat_{}; // Input. One is the original crop, the other is rescaled (?)
+ std::vector<Ort::Value> input_val_; // Tensors to put into the model
+ std::vector<std::string> input_names_; // Refers to the names in the onnx model.
+ std::vector<const char *> input_c_names_; // Refers to the C names in the onnx model.
+ // Outputs
+ cv::Vec<float, 3> output_coord_{}; // 2d Coordinate and head size output.
+ cv::Vec<float, 4> output_quat_{}; // Quaternion output
+ cv::Vec<float, 4> output_box_{}; // Bounding box output
+ cv::Matx33f output_rotaxis_scales_tril_{}; // Lower triangular matrix of LLT factorization of covariance of rotation vector as offset from output quaternion
+ cv::Matx33f output_coord_scales_tril_{}; // Lower triangular factor
+ cv::Vec3f output_coord_scales_std_{}; // Depending on the model, alternatively a 3d vector with standard deviations.
+ std::vector<Ort::Value> output_val_; // Tensors to put the model outputs in.
+ std::vector<std::string> output_names_; // Refers to the names in the onnx model.
+ std::vector<const char *> output_c_names_; // Refers to the C names in the onnx model.
+ // More bookkeeping
+ double last_inference_time_ = 0;
+ bool has_uncertainty_ = false;
+ bool pos_scale_uncertainty_is_matrix_ = false;
+};
+
+
+// Finds the intensity where x percent of pixels have less intensity than that.
+int find_input_intensity_quantile(const cv::Mat& frame, float percentage);
+
+// Adjust brightness levels to full range and scales the value range to [-0.5, 0.5]
+void normalize_brightness(const cv::Mat& frame, cv::Mat& out);
+
+
+} // namespace neuralnet_tracker_ns
diff --git a/tracker-neuralnet/models/head-pose-0.2-big.onnx b/tracker-neuralnet/models/head-pose-0.2-big.onnx
new file mode 100644
index 00000000..e53fd831
--- /dev/null
+++ b/tracker-neuralnet/models/head-pose-0.2-big.onnx
Binary files differ
diff --git a/tracker-neuralnet/models/head-pose.onnx b/tracker-neuralnet/models/head-pose-0.2-small.onnx
index dcb55dcc..f2b64219 100644
--- a/tracker-neuralnet/models/head-pose.onnx
+++ b/tracker-neuralnet/models/head-pose-0.2-small.onnx
Binary files differ
diff --git a/tracker-neuralnet/models/head-pose-0.3-big-quantized.onnx b/tracker-neuralnet/models/head-pose-0.3-big-quantized.onnx
new file mode 100644
index 00000000..7f875c63
--- /dev/null
+++ b/tracker-neuralnet/models/head-pose-0.3-big-quantized.onnx
Binary files differ
diff --git a/tracker-neuralnet/neuralnet-trackercontrols.ui b/tracker-neuralnet/neuralnet-trackercontrols.ui
index f16b5807..ae2450b4 100644
--- a/tracker-neuralnet/neuralnet-trackercontrols.ui
+++ b/tracker-neuralnet/neuralnet-trackercontrols.ui
@@ -9,333 +9,226 @@
<rect>
<x>0</x>
<y>0</y>
- <width>727</width>
- <height>202</height>
+ <width>651</width>
+ <height>432</height>
</rect>
</property>
<property name="windowTitle">
<string>Tracker settings</string>
</property>
<layout class="QGridLayout" name="gridLayout">
- <item row="5" column="0">
- <widget class="QDialogButtonBox" name="buttonBox">
- <property name="standardButtons">
- <set>QDialogButtonBox::Cancel|QDialogButtonBox::Ok</set>
+ <item row="4" column="0">
+ <widget class="QGroupBox" name="groupBox_10">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
</property>
- </widget>
- </item>
- <item row="3" column="0">
- <widget class="QFrame" name="frame_3">
- <property name="frameShape">
- <enum>QFrame::StyledPanel</enum>
+ <property name="autoFillBackground">
+ <bool>true</bool>
</property>
- <property name="frameShadow">
- <enum>QFrame::Raised</enum>
+ <property name="title">
+ <string>Head Center Offset</string>
</property>
- <layout class="QHBoxLayout" name="horizontalLayout">
- <property name="spacing">
- <number>0</number>
- </property>
- <property name="leftMargin">
- <number>0</number>
- </property>
- <property name="topMargin">
- <number>0</number>
- </property>
- <property name="rightMargin">
- <number>0</number>
- </property>
- <property name="bottomMargin">
- <number>0</number>
- </property>
- <item>
- <widget class="QGroupBox" name="groupBox">
+ <layout class="QGridLayout" name="gridLayout_5">
+ <item row="0" column="0">
+ <widget class="QFrame" name="frame_4">
<property name="sizePolicy">
- <sizepolicy hsizetype="Fixed" vsizetype="Preferred">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
- <property name="title">
- <string>Camera Configuration</string>
+ <property name="maximumSize">
+ <size>
+ <width>16777215</width>
+ <height>16777215</height>
+ </size>
</property>
- <layout class="QGridLayout" name="gridLayout_4">
- <item row="2" column="1">
- <widget class="QComboBox" name="cameraName">
+ <property name="frameShape">
+ <enum>QFrame::NoFrame</enum>
+ </property>
+ <property name="frameShadow">
+ <enum>QFrame::Raised</enum>
+ </property>
+ <layout class="QGridLayout" name="gridLayout_11">
+ <property name="sizeConstraint">
+ <enum>QLayout::SetDefaultConstraint</enum>
+ </property>
+ <property name="verticalSpacing">
+ <number>0</number>
+ </property>
+ <item row="2" column="0">
+ <widget class="QLabel" name="label_66">
<property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <sizepolicy hsizetype="Maximum" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
+ <property name="text">
+ <string>Right</string>
+ </property>
</widget>
</item>
- <item row="0" column="1">
- <widget class="QSpinBox" name="cameraFOV">
+ <item row="0" column="0">
+ <widget class="QLabel" name="label_61">
<property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <sizepolicy hsizetype="Maximum" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
- <property name="locale">
- <locale language="English" country="UnitedStates"/>
- </property>
- <property name="minimum">
- <number>35</number>
- </property>
- <property name="maximum">
- <number>90</number>
+ <property name="text">
+ <string>Forward</string>
</property>
</widget>
</item>
<item row="1" column="0">
- <widget class="QLabel" name="label_12">
- <property name="text">
- <string>Frames per second</string>
+ <widget class="QLabel" name="label_62">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Maximum" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
</property>
- </widget>
- </item>
- <item row="2" column="0">
- <widget class="QLabel" name="label_10">
<property name="text">
- <string>Camera name</string>
+ <string>Up</string>
</property>
</widget>
</item>
- <item row="0" column="0">
- <widget class="QLabel" name="label_9">
- <property name="text">
- <string>Diagonal FOV</string>
+ <item row="0" column="1">
+ <widget class="QSpinBox" name="tx_spin">
+ <property name="maximumSize">
+ <size>
+ <width>150</width>
+ <height>16777215</height>
+ </size>
+ </property>
+ <property name="suffix">
+ <string> mm</string>
+ </property>
+ <property name="minimum">
+ <number>-65535</number>
+ </property>
+ <property name="maximum">
+ <number>65536</number>
</property>
</widget>
</item>
<item row="1" column="1">
- <widget class="QComboBox" name="cameraFPS">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
+ <widget class="QSpinBox" name="ty_spin">
+ <property name="maximumSize">
+ <size>
+ <width>150</width>
+ <height>16777215</height>
+ </size>
+ </property>
+ <property name="suffix">
+ <string> mm</string>
+ </property>
+ <property name="minimum">
+ <number>-65535</number>
+ </property>
+ <property name="maximum">
+ <number>65536</number>
</property>
</widget>
</item>
- <item row="3" column="1">
- <widget class="QPushButton" name="camera_settings">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Maximum">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
+ <item row="2" column="1">
+ <widget class="QSpinBox" name="tz_spin">
+ <property name="maximumSize">
+ <size>
+ <width>150</width>
+ <height>16777215</height>
+ </size>
</property>
- <property name="text">
- <string>Camera settings</string>
+ <property name="suffix">
+ <string> mm</string>
+ </property>
+ <property name="minimum">
+ <number>-65535</number>
+ </property>
+ <property name="maximum">
+ <number>65536</number>
</property>
</widget>
</item>
</layout>
</widget>
</item>
- <item>
- <widget class="QGroupBox" name="groupBox_10">
+ <item row="0" column="1">
+ <widget class="QFrame" name="frame_5">
<property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <sizepolicy hsizetype="Preferred" vsizetype="Expanding">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
- <property name="title">
- <string>Head Center Offset</string>
+ <property name="minimumSize">
+ <size>
+ <width>260</width>
+ <height>0</height>
+ </size>
</property>
- <layout class="QGridLayout" name="gridLayout_5">
- <item row="0" column="0">
- <widget class="QFrame" name="frame_4">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
+ <property name="frameShape">
+ <enum>QFrame::NoFrame</enum>
+ </property>
+ <property name="frameShadow">
+ <enum>QFrame::Raised</enum>
+ </property>
+ <layout class="QVBoxLayout" name="verticalLayout_2">
+ <item>
+ <widget class="QLabel" name="label_59">
+ <property name="text">
+ <string>Use only yaw and pitch while calibrating.
+Don't roll or change position.</string>
</property>
- <property name="maximumSize">
- <size>
- <width>16777215</width>
- <height>16777215</height>
- </size>
+ <property name="alignment">
+ <set>Qt::AlignCenter</set>
</property>
- <property name="frameShape">
- <enum>QFrame::NoFrame</enum>
+ <property name="wordWrap">
+ <bool>true</bool>
+ </property>
+ <property name="openExternalLinks">
+ <bool>false</bool>
</property>
- <property name="frameShadow">
- <enum>QFrame::Raised</enum>
- </property>
- <layout class="QGridLayout" name="gridLayout_11">
- <item row="1" column="1">
- <widget class="QSpinBox" name="ty_spin">
- <property name="maximumSize">
- <size>
- <width>150</width>
- <height>16777215</height>
- </size>
- </property>
- <property name="suffix">
- <string> mm</string>
- </property>
- <property name="minimum">
- <number>-65535</number>
- </property>
- <property name="maximum">
- <number>65536</number>
- </property>
- </widget>
- </item>
- <item row="2" column="0">
- <widget class="QLabel" name="label_66">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Maximum" vsizetype="Preferred">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
- </property>
- <property name="text">
- <string>Right</string>
- </property>
- </widget>
- </item>
- <item row="2" column="1">
- <widget class="QSpinBox" name="tz_spin">
- <property name="maximumSize">
- <size>
- <width>150</width>
- <height>16777215</height>
- </size>
- </property>
- <property name="suffix">
- <string> mm</string>
- </property>
- <property name="minimum">
- <number>-65535</number>
- </property>
- <property name="maximum">
- <number>65536</number>
- </property>
- </widget>
- </item>
- <item row="0" column="0">
- <widget class="QLabel" name="label_61">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Maximum" vsizetype="Preferred">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
- </property>
- <property name="text">
- <string>Forward</string>
- </property>
- </widget>
- </item>
- <item row="0" column="1">
- <widget class="QSpinBox" name="tx_spin">
- <property name="maximumSize">
- <size>
- <width>150</width>
- <height>16777215</height>
- </size>
- </property>
- <property name="suffix">
- <string> mm</string>
- </property>
- <property name="minimum">
- <number>-65535</number>
- </property>
- <property name="maximum">
- <number>65536</number>
- </property>
- </widget>
- </item>
- <item row="1" column="0">
- <widget class="QLabel" name="label_62">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Maximum" vsizetype="Preferred">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
- </property>
- <property name="text">
- <string>Up</string>
- </property>
- </widget>
- </item>
- </layout>
</widget>
</item>
- <item row="0" column="1">
- <widget class="QFrame" name="frame_5">
+ <item>
+ <widget class="QLabel" name="sample_count_display">
<property name="sizePolicy">
- <sizepolicy hsizetype="Preferred" vsizetype="Expanding">
+ <sizepolicy hsizetype="Minimum" vsizetype="Maximum">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
- <property name="minimumSize">
- <size>
- <width>260</width>
- <height>0</height>
- </size>
- </property>
<property name="frameShape">
- <enum>QFrame::NoFrame</enum>
+ <enum>QFrame::Panel</enum>
</property>
<property name="frameShadow">
- <enum>QFrame::Raised</enum>
+ <enum>QFrame::Sunken</enum>
+ </property>
+ <property name="text">
+ <string/>
+ </property>
+ <property name="wordWrap">
+ <bool>true</bool>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QPushButton" name="tcalib_button">
+ <property name="enabled">
+ <bool>false</bool>
+ </property>
+ <property name="text">
+ <string>Start calibration</string>
+ </property>
+ <property name="checkable">
+ <bool>true</bool>
</property>
- <layout class="QVBoxLayout" name="verticalLayout_2">
- <item>
- <widget class="QLabel" name="label_59">
- <property name="text">
- <string>Use only yaw and pitch while calibrating.
-Don't roll or change position.</string>
- </property>
- <property name="alignment">
- <set>Qt::AlignCenter</set>
- </property>
- <property name="wordWrap">
- <bool>true</bool>
- </property>
- <property name="openExternalLinks">
- <bool>false</bool>
- </property>
- </widget>
- </item>
- <item>
- <widget class="QLabel" name="sample_count_display">
- <property name="sizePolicy">
- <sizepolicy hsizetype="Minimum" vsizetype="Maximum">
- <horstretch>0</horstretch>
- <verstretch>0</verstretch>
- </sizepolicy>
- </property>
- <property name="text">
- <string/>
- </property>
- <property name="wordWrap">
- <bool>true</bool>
- </property>
- </widget>
- </item>
- <item>
- <widget class="QPushButton" name="tcalib_button">
- <property name="enabled">
- <bool>false</bool>
- </property>
- <property name="text">
- <string>Start calibration</string>
- </property>
- <property name="checkable">
- <bool>true</bool>
- </property>
- </widget>
- </item>
- </layout>
</widget>
</item>
</layout>
@@ -344,13 +237,442 @@ Don't roll or change position.</string>
</layout>
</widget>
</item>
- <item row="4" column="0">
- <widget class="QCheckBox" name="showNetworkInput">
+ <item row="8" column="0">
+ <widget class="QDialogButtonBox" name="buttonBox">
+ <property name="standardButtons">
+ <set>QDialogButtonBox::Cancel|QDialogButtonBox::Ok</set>
+ </property>
+ </widget>
+ </item>
+ <item row="2" column="0">
+ <widget class="QGroupBox" name="groupBox">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="autoFillBackground">
+ <bool>true</bool>
+ </property>
+ <property name="title">
+ <string>Camera Configuration</string>
+ </property>
+ <property name="flat">
+ <bool>false</bool>
+ </property>
+ <property name="checkable">
+ <bool>false</bool>
+ </property>
+ <layout class="QHBoxLayout" name="horizontalLayout">
+ <property name="spacing">
+ <number>10</number>
+ </property>
+ <property name="bottomMargin">
+ <number>8</number>
+ </property>
+ <item>
+ <layout class="QGridLayout" name="gridLayout_3">
+ <property name="sizeConstraint">
+ <enum>QLayout::SetDefaultConstraint</enum>
+ </property>
+ <property name="leftMargin">
+ <number>0</number>
+ </property>
+ <property name="topMargin">
+ <number>0</number>
+ </property>
+ <property name="rightMargin">
+ <number>0</number>
+ </property>
+ <property name="bottomMargin">
+ <number>0</number>
+ </property>
+ <property name="horizontalSpacing">
+ <number>0</number>
+ </property>
+ <property name="verticalSpacing">
+ <number>2</number>
+ </property>
+ <item row="0" column="1">
+ <widget class="QComboBox" name="cameraName">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ </widget>
+ </item>
+ <item row="1" column="0">
+ <widget class="QLabel" name="label_9">
+ <property name="text">
+ <string>Diagonal FOV</string>
+ </property>
+ </widget>
+ </item>
+ <item row="0" column="0">
+ <widget class="QLabel" name="label_10">
+ <property name="text">
+ <string>Camera name</string>
+ </property>
+ </widget>
+ </item>
+ <item row="1" column="1">
+ <widget class="QSpinBox" name="cameraFOV">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="toolTip">
+ <string>Field of view. Needed to transform the pose to world coordinates.</string>
+ </property>
+ <property name="locale">
+ <locale language="English" country="UnitedStates"/>
+ </property>
+ <property name="minimum">
+ <number>35</number>
+ </property>
+ <property name="maximum">
+ <number>90</number>
+ </property>
+ </widget>
+ </item>
+ <item row="2" column="1">
+ <widget class="QComboBox" name="resolution">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="toolTip">
+ <string>The requested resolution for cases where the camera delivers maximum frame rate only for a particular resolution. The image may still be downscaled to the internal resolution.</string>
+ </property>
+ </widget>
+ </item>
+ <item row="2" column="0">
+ <widget class="QLabel" name="resolution_label">
+ <property name="text">
+ <string>Resolution</string>
+ </property>
+ </widget>
+ </item>
+ </layout>
+ </item>
+ <item>
+ <layout class="QGridLayout" name="gridLayout_6">
+ <property name="leftMargin">
+ <number>0</number>
+ </property>
+ <property name="topMargin">
+ <number>0</number>
+ </property>
+ <property name="rightMargin">
+ <number>0</number>
+ </property>
+ <property name="bottomMargin">
+ <number>0</number>
+ </property>
+ <property name="horizontalSpacing">
+ <number>0</number>
+ </property>
+ <property name="verticalSpacing">
+ <number>2</number>
+ </property>
+ <item row="4" column="1">
+ <widget class="QComboBox" name="cameraFPS">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="toolTip">
+ <string>Requested video frame rate. Actual setting may not be supported by the camera.</string>
+ </property>
+ </widget>
+ </item>
+ <item row="4" column="0">
+ <widget class="QLabel" name="label_12">
+ <property name="text">
+ <string>Frames per second</string>
+ </property>
+ </widget>
+ </item>
+ <item row="2" column="1">
+ <widget class="QCheckBox" name="use_mjpeg">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Minimum" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="minimumSize">
+ <size>
+ <width>0</width>
+ <height>0</height>
+ </size>
+ </property>
+ <property name="text">
+ <string/>
+ </property>
+ </widget>
+ </item>
+ <item row="2" column="0">
+ <widget class="QLabel" name="label_11">
+ <property name="text">
+ <string>MJPEG</string>
+ </property>
+ </widget>
+ </item>
+ <item row="0" column="1">
+ <widget class="QPushButton" name="camera_settings">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="text">
+ <string>Camera settings</string>
+ </property>
+ </widget>
+ </item>
+ </layout>
+ </item>
+ </layout>
+ </widget>
+ </item>
+ <item row="7" column="0">
+ <widget class="QLabel" name="resolution_display">
+ <property name="autoFillBackground">
+ <bool>true</bool>
+ </property>
+ <property name="frameShape">
+ <enum>QFrame::Panel</enum>
+ </property>
+ <property name="frameShadow">
+ <enum>QFrame::Sunken</enum>
+ </property>
<property name="text">
- <string>Show Network Input</string>
+ <string notr="true"/>
</property>
</widget>
</item>
+ <item row="5" column="0">
+ <widget class="QGroupBox" name="tuningOptionsBox">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Preferred" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="minimumSize">
+ <size>
+ <width>0</width>
+ <height>0</height>
+ </size>
+ </property>
+ <property name="autoFillBackground">
+ <bool>true</bool>
+ </property>
+ <property name="title">
+ <string>Tuning / Debug</string>
+ </property>
+ <layout class="QVBoxLayout" name="verticalLayout">
+ <item>
+ <layout class="QHBoxLayout" name="horizontalLayout_3">
+ <item>
+ <widget class="QLabel" name="threadCountLabel">
+ <property name="text">
+ <string>Thread Count</string>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QSpinBox" name="threadCount">
+ <property name="toolTip">
+ <string>Number of threads. Can be used to balance the CPU load between the game and the tracker.</string>
+ </property>
+ <property name="minimum">
+ <number>1</number>
+ </property>
+ <property name="maximum">
+ <number>32</number>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="Line" name="line">
+ <property name="orientation">
+ <enum>Qt::Vertical</enum>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QCheckBox" name="showNetworkInput">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Minimum" vsizetype="Fixed">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="toolTip">
+ <string>Show the image patch that the pose estimation model sees.</string>
+ </property>
+ <property name="text">
+ <string>Show Network Input</string>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="Line" name="line_2">
+ <property name="orientation">
+ <enum>Qt::Vertical</enum>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QLabel" name="roiFilterAlphaLabel">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Minimum" vsizetype="Minimum">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="text">
+ <string>ROI Smoothing Alpha</string>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QDoubleSpinBox" name="roiFilterAlpha">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Minimum" vsizetype="Fixed">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="maximumSize">
+ <size>
+ <width>150</width>
+ <height>16777215</height>
+ </size>
+ </property>
+ <property name="toolTip">
+ <string>Amount of smoothing of the face region coordinates. Can help stabilize the pose.</string>
+ </property>
+ <property name="wrapping">
+ <bool>false</bool>
+ </property>
+ <property name="decimals">
+ <number>2</number>
+ </property>
+ <property name="maximum">
+ <double>1.000000000000000</double>
+ </property>
+ <property name="singleStep">
+ <double>0.010000000000000</double>
+ </property>
+ <property name="value">
+ <double>1.000000000000000</double>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QLabel" name="roiZoomLabel">
+ <property name="text">
+ <string>ROI Zoom</string>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QDoubleSpinBox" name="roiZoom">
+ <property name="toolTip">
+ <string>Zoom factor for the face region. Applied before the patch is fed into the pose estimation model. There is a sweet spot near 1.</string>
+ </property>
+ <property name="minimum">
+ <double>0.100000000000000</double>
+ </property>
+ <property name="maximum">
+ <double>2.000000000000000</double>
+ </property>
+ <property name="singleStep">
+ <double>0.010000000000000</double>
+ </property>
+ <property name="value">
+ <double>1.000000000000000</double>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <spacer name="horizontalSpacer">
+ <property name="orientation">
+ <enum>Qt::Horizontal</enum>
+ </property>
+ <property name="sizeHint" stdset="0">
+ <size>
+ <width>40</width>
+ <height>20</height>
+ </size>
+ </property>
+ </spacer>
+ </item>
+ </layout>
+ </item>
+ <item>
+ <widget class="QFrame" name="network_select_frame">
+ <property name="frameShape">
+ <enum>QFrame::NoFrame</enum>
+ </property>
+ <property name="frameShadow">
+ <enum>QFrame::Raised</enum>
+ </property>
+ <layout class="QHBoxLayout" name="horizontalLayout_2">
+ <property name="leftMargin">
+ <number>0</number>
+ </property>
+ <property name="topMargin">
+ <number>0</number>
+ </property>
+ <property name="rightMargin">
+ <number>0</number>
+ </property>
+ <property name="bottomMargin">
+ <number>0</number>
+ </property>
+ <item>
+ <widget class="QPushButton" name="posenetSelectButton">
+ <property name="toolTip">
+ <string>Select the pose network. Changes take affect on the next tracker start</string>
+ </property>
+ <property name="text">
+ <string>Select Pose Net ONNX</string>
+ </property>
+ </widget>
+ </item>
+ <item>
+ <widget class="QLabel" name="posenetFileDisplay">
+ <property name="sizePolicy">
+ <sizepolicy hsizetype="Expanding" vsizetype="Preferred">
+ <horstretch>0</horstretch>
+ <verstretch>0</verstretch>
+ </sizepolicy>
+ </property>
+ <property name="text">
+ <string>&lt;the pose net file&gt;</string>
+ </property>
+ </widget>
+ </item>
+ </layout>
+ </widget>
+ </item>
+ </layout>
+ </widget>
+ </item>
</layout>
</widget>
<resources/>
diff --git a/tracker-neuralnet/opencv_contrib.h b/tracker-neuralnet/opencv_contrib.h
new file mode 100644
index 00000000..1c199025
--- /dev/null
+++ b/tracker-neuralnet/opencv_contrib.h
@@ -0,0 +1,120 @@
+#pragma once
+
+#include <opencv2/core.hpp>
+#include <opencv2/core/base.hpp>
+#include <opencv2/core/quaternion.hpp>
+
+// Well eventually it might be a contribution
+
+namespace cvcontrib
+{
+
+
+template<class T>
+cv::Point_<T> as_point(const cv::Size_<T>& s)
+{
+ return { s.width, s.height };
+}
+
+
+template<class T>
+cv::Size_<T> as_size(const cv::Point_<T>& p)
+{
+ return { p.x, p.y };
+}
+
+
+template<int n, int m>
+inline bool allfinite(const cv::Matx<float, n, m> &mat)
+{
+ const size_t sz = mat.rows*mat.cols;
+ for (size_t i=0; i<sz; ++i)
+ if (!std::isfinite(mat.val[i]))
+ return false;
+ return true;
+}
+
+
+// Because compiler refuses to convert it automatically
+template<int n>
+inline cv::Vec<float, n> to_vec(const cv::Matx<float, n, 1>& m)
+{
+ return cv::Vec<float,n>{m.val};
+}
+
+
+template<int n, int m, int o>
+inline void set_minor(cv::Vec<float, m> &dst, const int startrow, const cv::Matx<float, o, 1> &src)
+{
+ assert (startrow>=0 && startrow+n <= dst.rows);
+ for (int row=startrow, i=0; row<startrow+n; ++row,++i)
+ {
+ dst[row] = src(i,0);
+ }
+}
+
+
+template<int nrows, int ncols, int m, int n>
+inline void set_minor(cv::Matx<float, m, n>& dst, const int startrow, int startcol, const cv::Matx<float, nrows, ncols> &src)
+{
+ assert (startrow>=0 && startrow+nrows <= dst.rows);
+ assert (startcol>=0 && startcol+ncols <= dst.cols);
+ for (int row=startrow, i=0; row<startrow+nrows; ++row,++i)
+ {
+ for (int col=startcol, j=0; col<startcol+ncols; ++col,++j)
+ {
+ dst(row, col) = src(i,j);
+ }
+ }
+}
+
+
+inline cv::Quatf identity_quat()
+{
+ return cv::Quatf(1,0,0,0);
+}
+
+
+inline cv::Vec3f toRotVec(const cv::Quatf& q)
+{
+ // This is an improved implementation
+#if 1
+ // w = cos(alpha/2)
+ // xyz = sin(alpha/2)*axis
+ static constexpr float eps = 1.e-12f;
+ const cv::Vec3f xyz{q.x, q.y, q.z};
+ const float len = cv::norm(xyz);
+ const float angle = std::atan2(len, q.w)*2.f;
+ return xyz*(angle/(len+eps));
+#else
+ // The opencv implementation fails even the simplest test:
+ // out = toRVec(cv::Quatf{1., 0., 0., 0. });
+ // ASSERT_TRUE(std::isfinite(out[0]) && std::isfinite(out[1]) && std::isfinite(out[2]));
+ return q.toRotVec();
+#endif
+}
+
+
+inline cv::Vec3f rotate(const cv::Quatf& q, const cv::Vec3f &v)
+{
+ const auto r = q * cv::Quatf{0., v[0], v[1], v[2]} * q.conjugate();
+ return { r.x, r.y, r.z };
+}
+
+
+template<int n>
+inline cv::Matx<float, n, n> cholesky(const cv::Matx<float, n, n>& mat)
+{
+ cv::Matx<float, n, n> l = mat;
+ // Der Code ist die Doku!
+ // https://github.com/opencv/opencv/blob/4.5.4/modules/core/src/matrix_decomp.cpp#L95
+ cv::Cholesky(l.val, l.cols * sizeof(float), n, nullptr, 0, 0);
+ // It doesn't clear the upper triangle so we do it for it.
+ for (int row=0; row<n; ++row)
+ for (int col=row+1; col<n; ++col)
+ l(row, col) = 0.f;
+ return l;
+}
+
+
+} // namespace cvcontrib \ No newline at end of file
diff --git a/tracker-neuralnet/preview.cpp b/tracker-neuralnet/preview.cpp
new file mode 100644
index 00000000..76a6bbc0
--- /dev/null
+++ b/tracker-neuralnet/preview.cpp
@@ -0,0 +1,135 @@
+#include "preview.h"
+
+
+namespace neuralnet_tracker_ns
+{
+
+
+cv::Rect make_crop_rect_for_aspect(const cv::Size &size, int aspect_w, int aspect_h)
+{
+ auto [w, h] = size;
+ if ( w*aspect_h > aspect_w*h )
+ {
+ // Image is too wide
+ const int new_w = (aspect_w*h)/aspect_h;
+ return cv::Rect((w - new_w)/2, 0, new_w, h);
+ }
+ else
+ {
+ const int new_h = (aspect_h*w)/aspect_w;
+ return cv::Rect(0, (h - new_h)/2, w, new_h);
+ }
+}
+
+
+
+
+void Preview::init(const cv_video_widget& widget)
+{
+ auto [w,h] = widget.preview_size();
+ preview_size_ = { w, h };
+}
+
+
+void Preview::copy_video_frame(const cv::Mat& frame)
+{
+ cv::Rect roi = make_crop_rect_for_aspect(frame.size(), preview_size_.width, preview_size_.height);
+
+ cv::resize(frame(roi), preview_image_, preview_size_, 0, 0, cv::INTER_NEAREST);
+
+ offset_ = { (float)-roi.x, (float)-roi.y };
+ scale_ = float(preview_image_.cols) / float(roi.width);
+}
+
+
+void Preview::draw_gizmos(
+ const std::optional<PoseEstimator::Face> &face,
+ const std::optional<cv::Rect2f>& last_roi,
+ const std::optional<cv::Rect2f>& last_localizer_roi,
+ const cv::Point2f& neckjoint_position)
+{
+ if (preview_image_.empty())
+ return;
+
+ if (last_roi)
+ {
+ const int col = 255;
+ cv::rectangle(preview_image_, transform(*last_roi), cv::Scalar(0, col, 0), /*thickness=*/1);
+ }
+ if (last_localizer_roi)
+ {
+ const int col = 255;
+ cv::rectangle(preview_image_, transform(*last_localizer_roi), cv::Scalar(col, 0, 255-col), /*thickness=*/1);
+ }
+
+ if (face)
+ {
+ if (face->size>=1.f)
+ cv::circle(preview_image_, static_cast<cv::Point>(transform(face->center)), int(transform(face->size)), cv::Scalar(255,255,255), 2);
+ cv::circle(preview_image_, static_cast<cv::Point>(transform(face->center)), 3, cv::Scalar(255,255,255), -1);
+
+ const cv::Matx33f R = face->rotation.toRotMat3x3(cv::QUAT_ASSUME_UNIT);
+
+ auto draw_coord_line = [&](int i, const cv::Scalar& color)
+ {
+ const float vx = R(0,i);
+ const float vy = R(1,i);
+ static constexpr float len = 100.f;
+ cv::Point q = face->center + len*cv::Point2f{vx, vy};
+ cv::line(preview_image_, static_cast<cv::Point>(transform(face->center)), static_cast<cv::Point>(transform(q)), color, 2);
+ };
+ draw_coord_line(0, {0, 0, 255});
+ draw_coord_line(1, {0, 255, 0});
+ draw_coord_line(2, {255, 0, 0});
+
+ // Draw the computed joint position
+ auto xy = transform(neckjoint_position);
+ cv::circle(preview_image_, cv::Point(xy.x,xy.y), 5, cv::Scalar(0,0,255), -1);
+ }
+
+
+}
+
+void Preview::overlay_netinput(const cv::Mat& netinput)
+{
+ if (netinput.empty())
+ return;
+
+ const int w = std::min(netinput.cols, preview_image_.cols);
+ const int h = std::min(netinput.rows, preview_image_.rows);
+ cv::Rect roi(0, 0, w, h);
+ netinput(roi).copyTo(preview_image_(roi));
+}
+
+void Preview::draw_fps(double fps, double last_inference_time)
+{
+ char buf[128];
+ ::snprintf(buf, sizeof(buf), "%d Hz, pose inference: %d ms", std::clamp(int(fps), 0, 9999), int(last_inference_time));
+ cv::putText(preview_image_, buf, cv::Point(10, preview_image_.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1);
+}
+
+
+void Preview::copy_to_widget(cv_video_widget& widget)
+{
+ if (preview_image_.rows > 0)
+ widget.update_image(preview_image_);
+}
+
+
+cv::Rect2f Preview::transform(const cv::Rect2f& r) const
+{
+ return { (r.x - offset_.x)*scale_, (r.y - offset_.y)*scale_, r.width*scale_, r.height*scale_ };
+}
+
+cv::Point2f Preview::transform(const cv::Point2f& p) const
+{
+ return { (p.x - offset_.x)*scale_ , (p.y - offset_.y)*scale_ };
+}
+
+float Preview::transform(float s) const
+{
+ return s * scale_;
+}
+
+
+} \ No newline at end of file
diff --git a/tracker-neuralnet/preview.h b/tracker-neuralnet/preview.h
new file mode 100644
index 00000000..adc12993
--- /dev/null
+++ b/tracker-neuralnet/preview.h
@@ -0,0 +1,60 @@
+/* Copyright (c) 2021 Michael Welter <michael@welter-4d.de>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ */
+
+#pragma once
+
+#include "model_adapters.h"
+
+#include "cv/video-widget.hpp"
+
+#include <optional>
+
+#include <opencv2/core.hpp>
+#include <opencv2/imgproc.hpp>
+
+
+namespace neuralnet_tracker_ns
+{
+
+/** Makes a maximum size cropping rect with the given aspect.
+* @param aspect_w: nominator of the aspect ratio
+* @param aspect_h: denom of the aspect ratio
+*/
+cv::Rect make_crop_rect_for_aspect(const cv::Size &size, int aspect_w, int aspect_h);
+
+
+/** This class is responsible for drawing the debug/info gizmos
+*
+* In addition there function to transform the inputs to the size of
+* the preview image which can be different from the camera frame.
+*/
+class Preview
+{
+public:
+ void init(const cv_video_widget& widget);
+ void copy_video_frame(const cv::Mat& frame);
+ void draw_gizmos(
+ const std::optional<PoseEstimator::Face> &face,
+ const std::optional<cv::Rect2f>& last_roi,
+ const std::optional<cv::Rect2f>& last_localizer_roi,
+ const cv::Point2f& neckjoint_position);
+ void overlay_netinput(const cv::Mat& netinput);
+ void draw_fps(double fps, double last_inference_time);
+ void copy_to_widget(cv_video_widget& widget);
+private:
+ // Transform from camera image to preview
+ cv::Rect2f transform(const cv::Rect2f& r) const;
+ cv::Point2f transform(const cv::Point2f& p) const;
+ float transform(float s) const;
+
+ cv::Mat preview_image_;
+ cv::Size preview_size_ = { 0, 0 };
+ float scale_ = 1.f;
+ cv::Point2f offset_ = { 0.f, 0.f};
+};
+
+} // neuralnet_tracker_ns \ No newline at end of file
diff --git a/tracker-neuralnet/redist/vcomp140.dll b/tracker-neuralnet/redist/vcomp140.dll
new file mode 100644
index 00000000..42c069b9
--- /dev/null
+++ b/tracker-neuralnet/redist/vcomp140.dll
Binary files differ
diff --git a/tracker-neuralnet/tests.cpp b/tracker-neuralnet/tests.cpp
new file mode 100644
index 00000000..b1d2a6d0
--- /dev/null
+++ b/tracker-neuralnet/tests.cpp
@@ -0,0 +1,58 @@
+#include "model_adapters.h"
+
+#include <algorithm>
+#include <numeric>
+#include <cstdio>
+
+namespace neuralnet_tracker_tests
+{
+
+
+void assert_(bool ok, const std::string& msg)
+{
+ if (ok)
+ return;
+ std::cout << msg << std::endl;
+ std::exit(-1);
+}
+
+
+void test_find_input_intensity_quantile()
+{
+ cv::Mat data(10,10, CV_8UC1);
+ std::iota(data.begin<uint8_t>(), data.end<uint8_t>(), 0);
+
+ const float pct = 90;
+
+ const int val = neuralnet_tracker_ns::find_input_intensity_quantile(data, pct);
+
+ assert_(val == int(10*10*pct/100.f), "test_find_input_intensity_quantile failed");
+}
+
+
+void test_normalize_brightness()
+{
+ cv::Mat data(10,10, CV_8UC1);
+ std::iota(data.begin<uint8_t>(), data.end<uint8_t>(), 0);
+
+ cv::Mat out;
+ neuralnet_tracker_ns::normalize_brightness(data, out);
+
+ auto [minit,maxit] = std::minmax_element(out.begin<float>(),out.end<float>());
+ const auto minval = *minit;
+ const auto maxval = *maxit;
+ assert_(std::abs(minval + 0.5f) < 0.02, "test_normalize_brightness failed");
+ // If the brightest value is lower than half-max, it will be boosted to half-max.
+ // Otherwise it will just be rescaled to [-.5, 0.5 ]. Here we have the low-brightness case.
+ assert_(std::abs(maxval - 0.0f) < 0.02, "test_normalize_brightness failed");
+}
+
+
+void run()
+{
+ test_find_input_intensity_quantile();
+ test_normalize_brightness();
+}
+
+
+} \ No newline at end of file
diff --git a/tracker-neuralnet/unscented_trafo.h b/tracker-neuralnet/unscented_trafo.h
new file mode 100644
index 00000000..267aa969
--- /dev/null
+++ b/tracker-neuralnet/unscented_trafo.h
@@ -0,0 +1,132 @@
+#pragma once
+
+#include <algorithm>
+#include <opencv2/core.hpp>
+#include <opencv2/core/base.hpp>
+#include <opencv2/core/quaternion.hpp>
+
+#include <cmath>
+#include <vector>
+
+#include "opencv_contrib.h"
+
+namespace ukf_cv
+{
+
+using namespace cvcontrib;
+
+template<int dim, int otherdim = dim>
+using SigmaPoints = std::array<cv::Vec<float,otherdim>,dim*2+1>;
+
+
+// Ported from
+// https://filterpy.readthedocs.io/en/latest/_modules/filterpy/kalman/sigma_points.html
+// Excerpt from the original docu:
+// "
+
+// Generates sigma points and weights according to Van der Merwe's
+// 2004 dissertation[1] for the UnscentedKalmanFilter class.. It
+// parametizes the sigma points using alpha, beta, kappa terms, and
+// is the version seen in most publications.
+
+// Unless you know better, this should be your default choice.
+
+// alpha : float
+// Determins the spread of the sigma points around the mean.
+// Usually a small positive value (1e-3) according to [3].
+
+// beta : float
+// Incorporates prior knowledge of the distribution of the mean. For
+// Gaussian x beta=2 is optimal, according to [3].
+
+// kappa : float, default=0.0
+// Secondary scaling parameter usually set to 0 according to [4],
+// or to 3-n according to [5].
+
+// Reference
+// .. [1] R. Van der Merwe "Sigma-Point Kalman Filters for Probabilitic
+// Inference in Dynamic State-Space Models" (Doctoral dissertation)
+
+// "
+template<int dim>
+class MerweScaledSigmaPoints
+{
+public:
+ static constexpr int num_sigmas = 2*dim+1;
+
+ using Vector = cv::Vec<float,dim>;
+ using Matrix = cv::Matx<float,dim,dim>;
+
+ MerweScaledSigmaPoints(float alpha = 0.01, float beta = 2., int kappa = 3-dim)
+ {
+ lambda = alpha*alpha * (dim + kappa) - dim;
+ const float c = .5 / (dim + lambda);
+ Wc_i = c;
+ Wm_i = c;
+ Wm_0 = lambda / (dim+lambda);
+ Wc_0 = Wm_0 + (1.-alpha*alpha + beta);
+ }
+
+ SigmaPoints<dim> compute_sigmas(const Vector &mu, const Matrix &mat, bool is_tril_factor) const
+ {
+ const Matrix triu_factor = is_tril_factor ? mat.t() : cholesky(mat).t();
+
+ const Matrix U = triu_factor*std::sqrt(lambda+dim);
+
+ SigmaPoints<dim> sigmas;
+
+ sigmas[0] = mu;
+ for (int k=0; k<dim; ++k)
+ {
+ sigmas[k+1] = to_vec(mu + U.row(k).t());
+ sigmas[dim+k+1] = to_vec(mu - U.row(k).t());
+ }
+ return sigmas;
+ }
+
+ template<int otherdim>
+ std::tuple<cv::Vec<float,otherdim> , cv::Matx<float,otherdim,otherdim>> compute_statistics(const SigmaPoints<dim,otherdim> &sigmas) const
+ {
+ cv::Vec<float,otherdim> mu{}; // Zero initializes
+ for (size_t i=0; i<sigmas.size(); ++i)
+ {
+ mu += to_vec((i==0 ? Wm_0 : Wm_i) * sigmas[i]);
+ }
+
+ cv::Matx<float,otherdim,otherdim> cov{};
+ for (size_t i=0; i<sigmas.size(); ++i)
+ {
+ const auto p = sigmas[i] - mu;
+ cov += (i==0 ? Wc_0 : Wc_i)*p*p.t();
+ }
+
+ return { mu, cov };
+ }
+
+ template<int otherdim>
+ cv::Matx<float,dim,otherdim> compute_cov(const SigmaPoints<dim,dim> &sigmas, const SigmaPoints<dim,otherdim> &othersigmas) const
+ {
+ cv::Vec<float,dim> mu{}; // Zero initializes
+ cv::Vec<float,otherdim> mu_other{}; // Zero initializes
+ for (size_t i=0; i<sigmas.size(); ++i)
+ {
+ mu += to_vec((i==0 ? Wm_0 : Wm_i) * sigmas[i]);
+ mu_other += to_vec((i==0 ? Wm_0 : Wm_i) * othersigmas[i]);
+ }
+
+ cv::Matx<float,dim,otherdim> cov{};
+ for (size_t i=0; i<sigmas.size(); ++i)
+ {
+ const auto p = sigmas[i] - mu;
+ const auto q = othersigmas[i] - mu_other;
+ cov += (i==0 ? Wc_0 : Wc_i)*p*q.t();
+ }
+
+ return cov;
+ }
+private:
+ float Wc_i, Wm_i, Wm_0, Wc_0, lambda;
+};
+
+
+} // namespace ukf_cv \ No newline at end of file