summaryrefslogtreecommitdiffhomepage
path: root/tracker-points/point_tracker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tracker-points/point_tracker.cpp')
-rw-r--r--tracker-points/point_tracker.cpp364
1 files changed, 364 insertions, 0 deletions
diff --git a/tracker-points/point_tracker.cpp b/tracker-points/point_tracker.cpp
new file mode 100644
index 00000000..e209938f
--- /dev/null
+++ b/tracker-points/point_tracker.cpp
@@ -0,0 +1,364 @@
+/* Copyright (c) 2012 Patrick Ruoff
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ */
+
+#include "point_tracker.h"
+#include "compat/math-imports.hpp"
+
+#include <vector>
+#include <algorithm>
+#include <cmath>
+
+#include <QDebug>
+
+namespace pt_impl {
+
+using namespace numeric_types;
+
+static void get_row(const mat33& m, int i, vec3& v)
+{
+ v[0] = m(i,0);
+ v[1] = m(i,1);
+ v[2] = m(i,2);
+}
+
+static void set_row(mat33& m, int i, const vec3& v)
+{
+ m(i,0) = v[0];
+ m(i,1) = v[1];
+ m(i,2) = v[2];
+}
+
+PointModel::PointModel(const pt_settings& s)
+{
+ set_model(s);
+ // calculate u
+ u = M01.cross(M02);
+ u = cv::normalize(u);
+
+ // calculate projection matrix on M01,M02 plane
+ f s11 = M01.dot(M01);
+ f s12 = M01.dot(M02);
+ f s22 = M02.dot(M02);
+ P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11);
+}
+
+void PointModel::set_model(const pt_settings& s)
+{
+ switch (s.active_model_panel)
+ {
+ default:
+ eval_once(qDebug() << "pt: wrong model type selected");
+ [[fallthrough]];
+ case Clip:
+ M01 = vec3(0, s.clip_ty, -s.clip_tz);
+ M02 = vec3(0, -s.clip_by, -s.clip_bz);
+ break;
+ case Cap:
+ M01 = vec3(-s.cap_x, -s.cap_y, -s.cap_z);
+ M02 = vec3(s.cap_x, -s.cap_y, -s.cap_z);
+ break;
+ case Custom:
+ M01 = vec3(s.m01_x, s.m01_y, s.m01_z);
+ M02 = vec3(s.m02_x, s.m02_y, s.m02_z);
+ break;
+ }
+}
+
+void PointModel::get_d_order(const vec2* points, unsigned* d_order, const vec2& d) const
+{
+ constexpr unsigned cnt = PointModel::N_POINTS;
+ // fit line to orthographically projected points
+ using t = std::pair<f,unsigned>;
+ t d_vals[cnt];
+ // get sort indices with respect to d scalar product
+ for (unsigned i = 0; i < cnt; ++i)
+ d_vals[i] = t(d.dot(points[i]), i);
+
+ std::sort(d_vals,
+ d_vals + 3,
+ [](const t& a, const t& b) { return a.first < b.first; });
+
+ for (unsigned i = 0; i < cnt; ++i)
+ d_order[i] = d_vals[i].second;
+}
+
+
+PointTracker::PointTracker() = default;
+
+PointTracker::PointOrder PointTracker::find_correspondences_previous(const vec2* points,
+ const PointModel& model,
+ const pt_camera_info& info)
+{
+ const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
+ PointTracker::PointOrder p;
+ p[0] = project(vec3(0,0,0), fx);
+ p[1] = project(model.M01, fx);
+ p[2] = project(model.M02, fx);
+
+ constexpr unsigned sz = PointModel::N_POINTS;
+
+ // set correspondences by minimum distance to projected model point
+ bool point_taken[sz] {};
+
+ for (unsigned i=0; i < sz; ++i)
+ {
+ f min_sdist = 0;
+ unsigned min_idx = 0;
+ // find closest point to projected model point i
+ for (unsigned j=0; j < sz; ++j)
+ {
+ vec2 d = p[i]-points[j];
+ f sdist = d.dot(d);
+ if (sdist < min_sdist || j == 0)
+ {
+ min_idx = j;
+ min_sdist = sdist;
+ }
+ }
+
+ // if one point is closest to more than one model point, fallback
+ if (point_taken[min_idx])
+ {
+ reset_state();
+ return find_correspondences(points, model);
+ }
+ point_taken[min_idx] = true;
+ p[i] = points[min_idx];
+ }
+
+ return p;
+}
+
+void PointTracker::track(const std::vector<vec2>& points,
+ const PointModel& model,
+ const pt_camera_info& info,
+ int init_phase_timeout)
+{
+ const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
+ PointOrder order;
+
+ if (init_phase || init_phase_timeout <= 0 || t.elapsed_ms() > init_phase_timeout)
+ {
+ reset_state();
+ order = find_correspondences(points.data(), model);
+ }
+ else
+ order = find_correspondences_previous(points.data(), model, info);
+
+ if (POSIT(model, order, fx) != -1)
+ {
+ init_phase = false;
+ t.start();
+ }
+ else
+ reset_state();
+}
+
+PointTracker::PointOrder PointTracker::find_correspondences(const vec2* points, const PointModel& model)
+{
+ constexpr unsigned cnt = PointModel::N_POINTS;
+ // We do a simple freetrack-like sorting in the init phase...
+ unsigned point_d_order[cnt];
+ unsigned model_d_order[cnt];
+ // calculate d and d_order for simple freetrack-like point correspondence
+ vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
+ // sort points
+ model.get_d_order(points, point_d_order, d);
+ vec2 pts[cnt] {
+ { 0, 0 },
+ { model.M01[0], model.M01[1] },
+ { model.M02[0], model.M02[1] },
+ };
+ model.get_d_order(pts, model_d_order, d);
+
+ // set correspondences
+ PointOrder p;
+ for (unsigned i = 0; i < cnt; ++i)
+ p[model_d_order[i]] = points[point_d_order[i]];
+
+ return p;
+}
+
+#ifdef __clang__
+# pragma clang diagnostic push
+# pragma clang diagnostic ignored "-Wfloat-equal"
+#endif
+
+int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f focal_length)
+{
+ // POSIT algorithm for coplanar points as presented in
+ // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
+ // we use the same notation as in the paper here
+
+ // The expected rotation used for resolving the ambiguity in POSIT:
+ // In every iteration step the rotation closer to R_expected is taken
+ const mat33& R_expected{X_CM_expected.R};
+
+ // initial pose = last (predicted) pose
+ vec3 k;
+ get_row(R_expected, 2, k);
+ f Z0 = X_CM.t[2] < f(1e-4) ? f(1000) : X_CM.t[2];
+
+ f old_epsilon_1 = 0;
+ f old_epsilon_2 = 0;
+ f epsilon_1, epsilon_2;
+
+ vec3 I0, J0;
+ vec2 I0_coeff, J0_coeff;
+
+ vec3 I_1, J_1, I_2, J_2;
+ mat33 R_1, R_2;
+ mat33* R_current = &R_1;
+
+ constexpr int max_iter = 100;
+
+ int i;
+ for (i = 1; i < max_iter; ++i)
+ {
+ epsilon_1 = k.dot(model.M01)/Z0;
+ epsilon_2 = k.dot(model.M02)/Z0;
+
+ // vector of scalar products <I0, M0i> and <J0, M0i>
+ vec2 I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0],
+ order[2][0]*(1 + epsilon_2) - order[0][0]);
+ vec2 J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1],
+ order[2][1]*(1 + epsilon_2) - order[0][1]);
+
+ // construct projection of I, J onto M0i plane: I0 and J0
+ I0_coeff = model.P * I0_M0i;
+ J0_coeff = model.P * J0_M0i;
+ I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
+ J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
+
+ // calculate u component of I, J
+ f II0 = I0.dot(I0);
+ f IJ0 = I0.dot(J0);
+ f JJ0 = J0.dot(J0);
+ f rho, theta;
+ // CAVEAT don't change to comparison with an epsilon -sh 20160423
+ if (JJ0 == II0) {
+ rho = sqrt(fabs(2*IJ0));
+ theta = -pi/4;
+ if (IJ0<0) theta *= -1;
+ }
+ else {
+ rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
+ theta = atan( -2*IJ0 / (JJ0-II0) );
+ // avoid branch misprediction
+ theta += (JJ0 - II0 < 0) * pi;
+ theta *= f(.5);
+ }
+
+ // construct the two solutions
+ I_1 = I0 + rho*cos(theta)*model.u;
+ I_2 = I0 - rho*cos(theta)*model.u;
+
+ J_1 = J0 + rho*sin(theta)*model.u;
+ J_2 = J0 - rho*sin(theta)*model.u;
+
+ f norm_const = (f)(1/cv::norm(I_1)); // all have the same norm
+
+ // create rotation matrices
+ I_1 *= norm_const; J_1 *= norm_const;
+ I_2 *= norm_const; J_2 *= norm_const;
+
+ set_row(R_1, 0, I_1);
+ set_row(R_1, 1, J_1);
+ set_row(R_1, 2, I_1.cross(J_1));
+
+ set_row(R_2, 0, I_2);
+ set_row(R_2, 1, J_2);
+ set_row(R_2, 2, I_2.cross(J_2));
+
+ // the single translation solution
+ Z0 = norm_const * focal_length;
+
+ // pick the rotation solution closer to the expected one
+ // in simple metric d(A,B) = || I - A * B^T ||
+ f R_1_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_1.t()));
+ f R_2_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_2.t()));
+
+ if (R_1_deviation < R_2_deviation)
+ R_current = &R_1;
+ else
+ R_current = &R_2;
+
+ get_row(*R_current, 2, k);
+
+ // check for convergence condition
+ const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2);
+
+ if (delta < eps)
+ break;
+
+ old_epsilon_1 = epsilon_1;
+ old_epsilon_2 = epsilon_2;
+ }
+
+ const f t[3] = {
+ order[0][0] * Z0/focal_length,
+ order[0][1] * Z0/focal_length,
+ Z0
+ };
+ const mat33& r = *R_current;
+
+ for (int i = 0; i < 3; i++)
+ for (int j = 0; j < 3; j++)
+ {
+ int ret = std::fpclassify(r(i, j));
+ if (ret == FP_NAN || ret == FP_INFINITE)
+ {
+ qDebug() << "posit nan R";
+ return -1;
+ }
+ }
+
+ for (unsigned i = 0; i < 3; i++) // NOLINT(modernize-loop-convert)
+ {
+ int ret = std::fpclassify(t[i]);
+ if (ret == FP_NAN || ret == FP_INFINITE)
+ {
+ qDebug() << "posit nan T";
+ return -1;
+ }
+ }
+
+ // apply results
+ X_CM.R = r;
+ X_CM.t[0] = t[0];
+ X_CM.t[1] = t[1];
+ X_CM.t[2] = t[2];
+
+ X_CM_expected = X_CM;
+
+ //qDebug() << "iter:" << i;
+
+ return i;
+}
+
+#ifdef __clang__
+# pragma clang diagnostic pop
+#endif
+
+vec2 PointTracker::project(const vec3& v_M, f focal_length)
+{
+ return project(v_M, focal_length, X_CM);
+}
+
+vec2 PointTracker::project(const vec3& v_M, f focal_length, const Affine& X_CM)
+{
+ vec3 v_C = X_CM * v_M;
+ return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]);
+}
+
+void PointTracker::reset_state()
+{
+ init_phase = true;
+ X_CM_expected = {};
+}
+
+} // ns pt_impl