diff options
Diffstat (limited to 'tracker-pt/point_tracker.cpp')
-rw-r--r-- | tracker-pt/point_tracker.cpp | 152 |
1 files changed, 96 insertions, 56 deletions
diff --git a/tracker-pt/point_tracker.cpp b/tracker-pt/point_tracker.cpp index 51f10470..4c1e177f 100644 --- a/tracker-pt/point_tracker.cpp +++ b/tracker-pt/point_tracker.cpp @@ -13,32 +13,69 @@ #include <QDebug> -static void get_row(const cv::Matx33f& m, int i, cv::Vec3f& v) +using mat33 = pt_types::mat33; +using vec3 = pt_types::vec3; +using f = pt_types::f; + +static void get_row(const mat33& m, int i, vec3& v) { v[0] = m(i,0); v[1] = m(i,1); v[2] = m(i,2); } -static void set_row(cv::Matx33f& m, int i, const cv::Vec3f& v) +static void set_row(mat33& m, int i, const vec3& v) { m(i,0) = v[0]; m(i,1) = v[1]; m(i,2) = v[2]; } -static bool d_vals_sort(const std::pair<float,int> a, const std::pair<float,int> b) +static bool d_vals_sort(const std::pair<f,int> a, const std::pair<f,int> b) { return a.first < b.first; } -void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[], cv::Vec2f d) const +PointModel::PointModel(settings_pt& s) +{ + set_model(s); + // calculate u + u = M01.cross(M02); + u /= norm(u); + + // calculate projection matrix on M01,M02 plane + f s11 = M01.dot(M01); + f s12 = M01.dot(M02); + f s22 = M02.dot(M02); + P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11); +} + +void PointModel::set_model(settings_pt& s) +{ + switch (s.active_model_panel) + { + case Clip: + M01 = vec3(0, static_cast<f>(s.clip_ty), -static_cast<f>(s.clip_tz)); + M02 = vec3(0, -static_cast<f>(s.clip_by), -static_cast<f>(s.clip_bz)); + break; + case Cap: + M01 = vec3(-static_cast<f>(s.cap_x), -static_cast<f>(s.cap_y), -static_cast<f>(s.cap_z)); + M02 = vec3(static_cast<f>(s.cap_x), -static_cast<f>(s.cap_y), -static_cast<f>(s.cap_z)); + break; + case Custom: + M01 = vec3(s.m01_x, s.m01_y, s.m01_z); + M02 = vec3(s.m02_x, s.m02_y, s.m02_z); + break; + } +} + +void PointModel::get_d_order(const std::vector<vec2>& points, int* d_order, vec2 d) const { // fit line to orthographically projected points - std::vector<std::pair<float,int>> d_vals; + std::vector<std::pair<f,int>> d_vals; // get sort indices with respect to d scalar product for (unsigned i = 0; i < PointModel::N_POINTS; ++i) - d_vals.push_back(std::pair<float, int>(d.dot(points[i]), i)); + d_vals.push_back(std::pair<f, int>(d.dot(points[i]), i)); std::sort(d_vals.begin(), d_vals.end(), @@ -54,12 +91,12 @@ PointTracker::PointTracker() : init_phase(true) { } -PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel& model, float f) +PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<vec2>& points, const PointModel& model, f focal_length) { PointTracker::PointOrder p; - p.points[0] = project(cv::Vec3f(0,0,0), f); - p.points[1] = project(model.M01, f); - p.points[2] = project(model.M02, f); + p.points[0] = project(vec3(0,0,0), focal_length); + p.points[1] = project(model.M01, focal_length); + p.points[2] = project(model.M02, focal_length); // set correspondences by minimum distance to projected model point bool point_taken[PointModel::N_POINTS]; @@ -68,13 +105,13 @@ PointTracker::PointOrder PointTracker::find_correspondences_previous(const std:: for (unsigned i=0; i<PointModel::N_POINTS; ++i) { - float min_sdist = 0; + f min_sdist = 0; unsigned min_idx = 0; // find closest point to projected model point i for (unsigned j=0; j<PointModel::N_POINTS; ++j) { - cv::Vec2f d = p.points[i]-points[j]; - float sdist = d.dot(d); + vec2 d = p.points[i]-points[j]; + f sdist = d.dot(d); if (sdist < min_sdist || j==0) { min_idx = j; @@ -93,7 +130,7 @@ PointTracker::PointOrder PointTracker::find_correspondences_previous(const std:: return p; } -void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout) +void PointTracker::track(const std::vector<vec2>& points, const PointModel& model, f focal_length, bool dynamic_pose, int init_phase_timeout) { PointOrder order; @@ -106,26 +143,26 @@ void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& if (!dynamic_pose || init_phase) order = find_correspondences(points, model); else - order = find_correspondences_previous(points, model, f); + order = find_correspondences_previous(points, model, focal_length); - POSIT(model, order, f); + POSIT(model, order, focal_length); init_phase = false; t.start(); } -PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, const PointModel& model) +PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<vec2>& points, const PointModel& model) { // We do a simple freetrack-like sorting in the init phase... // sort points int point_d_order[PointModel::N_POINTS]; int model_d_order[PointModel::N_POINTS]; - cv::Vec2f d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); + vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); model.get_d_order(points, point_d_order, d); // calculate d and d_order for simple freetrack-like point correspondence - model.get_d_order(std::vector<cv::Vec2f> { - cv::Vec2f{0,0}, - cv::Vec2f(model.M01[0], model.M01[1]), - cv::Vec2f(model.M02[0], model.M02[1]) + model.get_d_order(std::vector<vec2> { + vec2{0,0}, + vec2(model.M01[0], model.M01[1]), + vec2(model.M02[0], model.M02[1]) }, model_d_order, d); @@ -137,7 +174,7 @@ PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv return p; } -int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length) +int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, f focal_length) { // POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] @@ -145,45 +182,45 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float // The expected rotation used for resolving the ambiguity in POSIT: // In every iteration step the rotation closer to R_expected is taken - cv::Matx33f R_expected = cv::Matx33f::eye(); + mat33 R_expected = mat33::eye(); // initial pose = last (predicted) pose - cv::Vec3f k; + vec3 k; get_row(R_expected, 2, k); - float Z0 = 1000.f; + f Z0 = f(1000); - float old_epsilon_1 = 0; - float old_epsilon_2 = 0; - float epsilon_1 = 1; - float epsilon_2 = 1; + f old_epsilon_1 = 0; + f old_epsilon_2 = 0; + f epsilon_1 = 1; + f epsilon_2 = 1; - cv::Vec3f I0, J0; - cv::Vec2f I0_coeff, J0_coeff; + vec3 I0, J0; + vec2 I0_coeff, J0_coeff; - cv::Vec3f I_1, J_1, I_2, J_2; - cv::Matx33f R_1, R_2; - cv::Matx33f* R_current; + vec3 I_1, J_1, I_2, J_2; + mat33 R_1, R_2; + mat33* R_current = &R_1; - constexpr int MAX_ITER = 100; - const float EPS_THRESHOLD = 1e-4f; + static constexpr int max_iter = 100; - const cv::Vec2f* order = order_.points; + const vec2* order = order_.points; using std::sqrt; using std::atan; using std::cos; using std::sin; + using std::fabs; int i=1; - for (; i<MAX_ITER; ++i) + for (; i<max_iter; ++i) { epsilon_1 = k.dot(model.M01)/Z0; epsilon_2 = k.dot(model.M02)/Z0; // vector of scalar products <I0, M0i> and <J0, M0i> - cv::Vec2f I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0], + vec2 I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0], order[2][0]*(1 + epsilon_2) - order[0][0]); - cv::Vec2f J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1], + vec2 J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1], order[2][1]*(1 + epsilon_2) - order[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 @@ -193,22 +230,22 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; // calculate u component of I, J - float II0 = I0.dot(I0); - float IJ0 = I0.dot(J0); - float JJ0 = J0.dot(J0); - float rho, theta; + f II0 = I0.dot(I0); + f IJ0 = I0.dot(J0); + f JJ0 = J0.dot(J0); + f rho, theta; // CAVEAT don't change to comparison with an epsilon -sh 20160423 if (JJ0 == II0) { - rho = std::sqrt(std::abs(2*IJ0)); - theta = -PI/4; + rho = sqrt(fabs(2*IJ0)); + theta = -pi/4; if (IJ0<0) theta *= -1; } else { rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); theta = atan( -2*IJ0 / (JJ0-II0) ); // avoid branch misprediction - theta += (JJ0 - II0 < 0) * PI; - theta /= 2; + theta += (JJ0 - II0 < 0) * pi; + theta *= f(.5); } // construct the two solutions @@ -218,7 +255,7 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float J_1 = J0 + rho*sin(theta)*model.u; J_2 = J0 - rho*sin(theta)*model.u; - float norm_const = 1/cv::norm(I_1); // all have the same norm + f norm_const = 1/cv::norm(I_1); // all have the same norm // create rotation matrices I_1 *= norm_const; J_1 *= norm_const; @@ -237,8 +274,8 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || - float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t()); - float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t()); + f R_1_deviation = cv::norm(mat33::eye() - R_expected * R_1.t()); + f R_2_deviation = cv::norm(mat33::eye() - R_expected * R_2.t()); if (R_1_deviation < R_2_deviation) R_current = &R_1; @@ -248,8 +285,11 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float get_row(*R_current, 2, k); // check for convergence condition - if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) + const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2); + + if (!(delta > eps)) break; + old_epsilon_1 = epsilon_1; old_epsilon_2 = epsilon_2; } @@ -266,8 +306,8 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float return i; } -cv::Vec2f PointTracker::project(const cv::Vec3f& v_M, float f) +pt_types::vec2 PointTracker::project(const vec3& v_M, f focal_length) { - cv::Vec3f v_C = X_CM * v_M; - return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]); + vec3 v_C = X_CM * v_M; + return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]); } |