From 4f05cb2af239ca8471b77c9f1d1c32e8c4cd3abc Mon Sep 17 00:00:00 2001 From: Stanislaw Halik Date: Fri, 22 Mar 2013 21:48:28 +0100 Subject: Remove .bat files, actually finish rename this time --- ftnoir_tracker_pt/point_tracker.cpp | 352 ++++++++++++++++++++++++++++++++++++ 1 file changed, 352 insertions(+) create mode 100644 ftnoir_tracker_pt/point_tracker.cpp (limited to 'ftnoir_tracker_pt/point_tracker.cpp') diff --git a/ftnoir_tracker_pt/point_tracker.cpp b/ftnoir_tracker_pt/point_tracker.cpp new file mode 100644 index 00000000..d617de19 --- /dev/null +++ b/ftnoir_tracker_pt/point_tracker.cpp @@ -0,0 +1,352 @@ +/* Copyright (c) 2012 Patrick Ruoff + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + */ + +#include "point_tracker.h" + +#include +#include +#include + +#include + +using namespace cv; +using namespace boost; +using namespace std; + +const float PI = 3.14159265358979323846f; + +// ---------------------------------------------------------------------------- +static void get_row(const Matx33f& m, int i, Vec3f& v) +{ + v[0] = m(i,0); + v[1] = m(i,1); + v[2] = m(i,2); +} + +static void set_row(Matx33f& m, int i, const Vec3f& v) +{ + m(i,0) = v[0]; + m(i,1) = v[1]; + m(i,2) = v[2]; +} + +// ---------------------------------------------------------------------------- +PointModel::PointModel(Vec3f M01, Vec3f M02) + : M01(M01), M02(M02) +{ + // calculate u + u = M01.cross(M02); + u /= norm(u); + + // calculate projection matrix on M01,M02 plane + float s11 = M01.dot(M01); + float s12 = M01.dot(M02); + float s22 = M02.dot(M02); + P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12, + -s12, s11); + + // calculate d and d_order for simple freetrack-like point correspondence + vector points; + points.push_back(Vec2f(0,0)); + points.push_back(Vec2f(M01[0], M01[1])); + points.push_back(Vec2f(M02[0], M02[1])); + // fit line to orthographically projected points + // ERROR: yields wrong results with colinear points?! + /* + Vec4f line; + fitLine(points, line, CV_DIST_L2, 0, 0.01, 0.01); + d[0] = line[0]; d[1] = line[1]; + */ + // TODO: fix this + d = Vec2f(M01[0]-M02[0], M01[1]-M02[1]); + + // sort model points + get_d_order(points, d_order); +} + +void PointModel::get_d_order(const std::vector& points, int d_order[]) const +{ + // get sort indices with respect to d scalar product + vector< pair > d_vals; + for (int i = 0; i(d.dot(points[i]), i)); + + struct + { + bool operator()(const pair& a, const pair& b) { return a.first < b.first; } + } comp; + sort(d_vals.begin(), d_vals.end(), comp); + + for (int i = 0; i& points, float f, float dt) +{ + if (!dynamic_pose_resolution) init_phase = true; + + dt_valid += dt; + // if there was no valid tracking result for too long, do a reset + if (dt_valid > dt_reset) + { + //qDebug()<<"dt_valid "< dt_reset "<& points, float f) +{ + if (init_phase) { + // We do a simple freetrack-like sorting in the init phase... + // sort points + int point_d_order[PointModel::N_POINTS]; + point_model->get_d_order(points, point_d_order); + + // set correspondences + for (int i=0; id_order[i]] = points[point_d_order[i]]; + } + } + else { + // ... otherwise we look at the distance to the projection of the expected model points + // project model points under current pose + p_exp[0] = project(Vec3f(0,0,0), f); + p_exp[1] = project(point_model->M01, f); + p_exp[2] = project(point_model->M02, f); + + // set correspondences by minimum distance to projected model point + bool point_taken[PointModel::N_POINTS]; + for (int i=0; iM01)/Z0; + epsilon_2 = k.dot(point_model->M02)/Z0; + + // vector of scalar products and + Vec2f I0_M0i(p[1][0]*(1.0 + epsilon_1) - p[0][0], + p[2][0]*(1.0 + epsilon_2) - p[0][0]); + Vec2f J0_M0i(p[1][1]*(1.0 + epsilon_1) - p[0][1], + p[2][1]*(1.0 + epsilon_2) - p[0][1]); + + // construct projection of I, J onto M0i plane: I0 and J0 + I0_coeff = point_model->P * I0_M0i; + J0_coeff = point_model->P * J0_M0i; + I0 = I0_coeff[0]*point_model->M01 + I0_coeff[1]*point_model->M02; + J0 = J0_coeff[0]*point_model->M01 + J0_coeff[1]*point_model->M02; + + // calculate u component of I, J + float II0 = I0.dot(I0); + float IJ0 = I0.dot(J0); + float JJ0 = J0.dot(J0); + float rho, theta; + if (JJ0 == II0) { + rho = sqrt(abs(2*IJ0)); + theta = -PI/4; + if (IJ0<0) theta *= -1; + } + else { + rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); + theta = atan( -2*IJ0 / (JJ0-II0) ); + if (JJ0 - II0 < 0) theta += PI; + theta /= 2; + } + + // construct the two solutions + I_1 = I0 + rho*cos(theta)*point_model->u; + I_2 = I0 - rho*cos(theta)*point_model->u; + + J_1 = J0 + rho*sin(theta)*point_model->u; + J_2 = J0 - rho*sin(theta)*point_model->u; + + float norm_const = 1.0/norm(I_1); // all have the same norm + + // create rotation matrices + I_1 *= norm_const; J_1 *= norm_const; + I_2 *= norm_const; J_2 *= norm_const; + + set_row(R_1, 0, I_1); + set_row(R_1, 1, J_1); + set_row(R_1, 2, I_1.cross(J_1)); + + set_row(R_2, 0, I_2); + set_row(R_2, 1, J_2); + set_row(R_2, 2, I_2.cross(J_2)); + + // the single translation solution + Z0 = norm_const * f; + + // pick the rotation solution closer to the expected one + // in simple metric d(A,B) = || I - A * B^T || + float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t()); + float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t()); + + if (R_1_deviation < R_2_deviation) + R_current = &R_1; + else + R_current = &R_2; + + get_row(*R_current, 2, k); + + // check for convergence condition + if (abs(epsilon_1 - old_epsilon_1) + abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) + break; + old_epsilon_1 = epsilon_1; + old_epsilon_2 = epsilon_2; + } + + // apply results + X_CM.R = *R_current; + X_CM.t[0] = p[0][0] * Z0/f; + X_CM.t[1] = p[0][1] * Z0/f; + X_CM.t[2] = Z0; + + return i; + + //Rodrigues(X_CM.R, r); + //qDebug()<<"iter: "<