/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_tracker.h" #include <vector> #include <algorithm> #include <cmath> #include <QDebug> using namespace cv; using namespace boost; using namespace std; const float PI = 3.14159265358979323846f; // ---------------------------------------------------------------------------- static void get_row(const Matx33f& m, int i, Vec3f& v) { v[0] = m(i,0); v[1] = m(i,1); v[2] = m(i,2); } static void set_row(Matx33f& m, int i, const Vec3f& v) { m(i,0) = v[0]; m(i,1) = v[1]; m(i,2) = v[2]; } // ---------------------------------------------------------------------------- PointModel::PointModel(Vec3f M01, Vec3f M02) : M01(M01), M02(M02) { // calculate u u = M01.cross(M02); u /= norm(u); // calculate projection matrix on M01,M02 plane float s11 = M01.dot(M01); float s12 = M01.dot(M02); float s22 = M02.dot(M02); P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12, -s12, s11); // calculate d and d_order for simple freetrack-like point correspondence vector<Vec2f> points; points.push_back(Vec2f(0,0)); points.push_back(Vec2f(M01[0], M01[1])); points.push_back(Vec2f(M02[0], M02[1])); // fit line to orthographically projected points // ERROR: yields wrong results with colinear points?! /* Vec4f line; fitLine(points, line, CV_DIST_L2, 0, 0.01, 0.01); d[0] = line[0]; d[1] = line[1]; */ // TODO: fix this d = Vec2f(M01[0]-M02[0], M01[1]-M02[1]); // sort model points get_d_order(points, d_order); } #ifdef OPENTRACK_API static bool d_vals_sort(const pair<float,int> a, const pair<float,int> b) { return a.first < b.first; } #endif void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[]) const { // get sort indices with respect to d scalar product vector< pair<float,int> > d_vals; for (int i = 0; i<points.size(); ++i) d_vals.push_back(pair<float, int>(d.dot(points[i]), i)); struct { bool operator()(const pair<float, int>& a, const pair<float, int>& b) { return a.first < b.first; } } comp; std::sort(d_vals.begin(), d_vals.end(), #ifdef OPENTRACK_API d_vals_sort #else comp #endif ); for (int i = 0; i<points.size(); ++i) d_order[i] = d_vals[i].second; } // ---------------------------------------------------------------------------- PointTracker::PointTracker() : init_phase(true), dt_valid(0), dt_reset(1), v_t(0,0,0), v_r(0,0,0), dynamic_pose_resolution(true) { X_CM.t[2] = 1000; // default position: 1 m away from cam; } void PointTracker::reset() { // enter init phase and reset velocities init_phase = true; dt_valid = 0; reset_velocities(); } void PointTracker::reset_velocities() { v_t = Vec3f(0,0,0); v_r = Vec3f(0,0,0); } bool PointTracker::track(const vector<Vec2f>& points, float f, float dt) { if (!dynamic_pose_resolution) init_phase = true; dt_valid += dt; // if there was no valid tracking result for too long, do a reset if (dt_valid > dt_reset) { //qDebug()<<"dt_valid "<<dt_valid<<" > dt_reset "<<dt_reset; reset(); } bool no_model = #ifdef OPENTRACK_API point_model.get() == NULL; #else !point_model; #endif // if there is a pointtracking problem, reset the velocities if (no_model || points.size() != PointModel::N_POINTS) { //qDebug()<<"Wrong number of points!"; reset_velocities(); return false; } X_CM_old = X_CM; // backup old transformation for velocity calculation if (!init_phase) predict(dt_valid); // if there is a point correspondence problem something has gone wrong, do a reset if (!find_correspondences(points, f)) { //qDebug()<<"Error in finding point correspondences!"; X_CM = X_CM_old; // undo prediction reset(); return false; } int n_iter = POSIT(f); //qDebug()<<"Number of POSIT iterations: "<<n_iter; if (!init_phase) update_velocities(dt_valid); // we have a valid tracking result, leave init phase and reset time since valid result init_phase = false; dt_valid = 0; return true; } void PointTracker::predict(float dt) { // predict with constant velocity Matx33f R; Rodrigues(dt*v_r, R); X_CM.R = R*X_CM.R; X_CM.t += dt * v_t; } void PointTracker::update_velocities(float dt) { // update velocities Rodrigues(X_CM.R*X_CM_old.R.t(), v_r); v_r /= dt; v_t = (X_CM.t - X_CM_old.t)/dt; } bool PointTracker::find_correspondences(const vector<Vec2f>& points, float f) { if (init_phase) { // We do a simple freetrack-like sorting in the init phase... // sort points int point_d_order[PointModel::N_POINTS]; point_model->get_d_order(points, point_d_order); // set correspondences for (int i=0; i<PointModel::N_POINTS; ++i) { p[point_model->d_order[i]] = points[point_d_order[i]]; } } else { // ... otherwise we look at the distance to the projection of the expected model points // project model points under current pose p_exp[0] = project(Vec3f(0,0,0), f); p_exp[1] = project(point_model->M01, f); p_exp[2] = project(point_model->M02, f); // set correspondences by minimum distance to projected model point bool point_taken[PointModel::N_POINTS]; for (int i=0; i<PointModel::N_POINTS; ++i) point_taken[i] = false; float min_sdist = 0; int min_idx = 0; for (int i=0; i<PointModel::N_POINTS; ++i) { // find closest point to projected model point i for (int j=0; j<PointModel::N_POINTS; ++j) { Vec2f d = p_exp[i]-points[j]; float sdist = d.dot(d); if (sdist < min_sdist || j==0) { min_idx = j; min_sdist = sdist; } } // if one point is closest to more than one model point, abort if (point_taken[min_idx]) return false; point_taken[min_idx] = true; p[i] = points[min_idx]; } } return true; } int PointTracker::POSIT(float f) { // POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] // we use the same notation as in the paper here // The expected rotation used for resolving the ambiguity in POSIT: // In every iteration step the rotation closer to R_expected is taken Matx33f R_expected; if (init_phase) R_expected = Matx33f::eye(); // in the init phase, we want to be close to the default pose = no rotation else R_expected = X_CM.R; // later we want to be close to the last (predicted) rotation // initial pose = last (predicted) pose Vec3f k; get_row(X_CM.R, 2, k); float Z0 = X_CM.t[2]; float old_epsilon_1 = 0; float old_epsilon_2 = 0; float epsilon_1 = 1; float epsilon_2 = 1; Vec3f I0, J0; Vec2f I0_coeff, J0_coeff; Vec3f I_1, J_1, I_2, J_2; Matx33f R_1, R_2; Matx33f* R_current; const int MAX_ITER = 100; const float EPS_THRESHOLD = 1e-4; int i=1; for (; i<MAX_ITER; ++i) { epsilon_1 = k.dot(point_model->M01)/Z0; epsilon_2 = k.dot(point_model->M02)/Z0; // vector of scalar products <I0, M0i> and <J0, M0i> Vec2f I0_M0i(p[1][0]*(1.0 + epsilon_1) - p[0][0], p[2][0]*(1.0 + epsilon_2) - p[0][0]); Vec2f J0_M0i(p[1][1]*(1.0 + epsilon_1) - p[0][1], p[2][1]*(1.0 + epsilon_2) - p[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 I0_coeff = point_model->P * I0_M0i; J0_coeff = point_model->P * J0_M0i; I0 = I0_coeff[0]*point_model->M01 + I0_coeff[1]*point_model->M02; J0 = J0_coeff[0]*point_model->M01 + J0_coeff[1]*point_model->M02; // calculate u component of I, J float II0 = I0.dot(I0); float IJ0 = I0.dot(J0); float JJ0 = J0.dot(J0); float rho, theta; if (JJ0 == II0) { rho = sqrt(abs(2*IJ0)); theta = -PI/4; if (IJ0<0) theta *= -1; } else { rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); theta = atan( -2*IJ0 / (JJ0-II0) ); if (JJ0 - II0 < 0) theta += PI; theta /= 2; } // construct the two solutions I_1 = I0 + rho*cos(theta)*point_model->u; I_2 = I0 - rho*cos(theta)*point_model->u; J_1 = J0 + rho*sin(theta)*point_model->u; J_2 = J0 - rho*sin(theta)*point_model->u; float norm_const = 1.0/norm(I_1); // all have the same norm // create rotation matrices I_1 *= norm_const; J_1 *= norm_const; I_2 *= norm_const; J_2 *= norm_const; set_row(R_1, 0, I_1); set_row(R_1, 1, J_1); set_row(R_1, 2, I_1.cross(J_1)); set_row(R_2, 0, I_2); set_row(R_2, 1, J_2); set_row(R_2, 2, I_2.cross(J_2)); // the single translation solution Z0 = norm_const * f; // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t()); float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t()); if (R_1_deviation < R_2_deviation) R_current = &R_1; else R_current = &R_2; get_row(*R_current, 2, k); // check for convergence condition if (abs(epsilon_1 - old_epsilon_1) + abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) break; old_epsilon_1 = epsilon_1; old_epsilon_2 = epsilon_2; } // apply results X_CM.R = *R_current; X_CM.t[0] = p[0][0] * Z0/f; X_CM.t[1] = p[0][1] * Z0/f; X_CM.t[2] = Z0; return i; //Rodrigues(X_CM.R, r); //qDebug()<<"iter: "<<i; //qDebug()<<"t: "<<X_CM.t[0]<<' '<<X_CM.t[1]<<' '<<X_CM.t[2]; //Vec3f r; // //qDebug()<<"r: "<<r[0]<<' '<<r[1]<<' '<<r[2]<<'\n'; }