/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_tracker.h" #include #include #include #include using namespace cv; using namespace boost; using namespace std; const float PI = 3.14159265358979323846f; // ---------------------------------------------------------------------------- static void get_row(const Matx33f& m, int i, Vec3f& v) { v[0] = m(i,0); v[1] = m(i,1); v[2] = m(i,2); } static void set_row(Matx33f& m, int i, const Vec3f& v) { m(i,0) = v[0]; m(i,1) = v[1]; m(i,2) = v[2]; } // ---------------------------------------------------------------------------- PointModel::PointModel(Vec3f M01, Vec3f M02) : M01(M01), M02(M02) { // calculate u u = M01.cross(M02); u /= norm(u); // calculate projection matrix on M01,M02 plane float s11 = M01.dot(M01); float s12 = M01.dot(M02); float s22 = M02.dot(M02); P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12, -s12, s11); // calculate d and d_order for simple freetrack-like point correspondence vector points; points.push_back(Vec2f(0,0)); points.push_back(Vec2f(M01[0], M01[1])); points.push_back(Vec2f(M02[0], M02[1])); // fit line to orthographically projected points // ERROR: yields wrong results with colinear points?! /* Vec4f line; fitLine(points, line, CV_DIST_L2, 0, 0.01, 0.01); d[0] = line[0]; d[1] = line[1]; */ // TODO: fix this d = Vec2f(M01[0]-M02[0], M01[1]-M02[1]); // sort model points get_d_order(points, d_order); } void PointModel::get_d_order(const std::vector& points, int d_order[]) const { // get sort indices with respect to d scalar product vector< pair > d_vals; for (int i = 0; i(d.dot(points[i]), i)); struct { bool operator()(const pair& a, const pair& b) { return a.first < b.first; } } comp; sort(d_vals.begin(), d_vals.end(), comp); for (int i = 0; i& points, float f, float dt) { if (!point_model) return false; if (!find_correspondences(points)) return false; POSIT(f); return true; } bool PointTracker::find_correspondences(const vector& points) { if (points.size() != PointModel::N_POINTS) return false; // sort points int point_d_order[PointModel::N_POINTS]; point_model->get_d_order(points, point_d_order); // set correspondences for (int i=0; id_order[i]] = points[point_d_order[i]]; } return true; } void PointTracker::POSIT(float f) { float old_epsilon_1 = 0; float old_epsilon_2 = 0; float epsilon_1 = 1; float epsilon_2 = 1; Vec3f I0, J0; Vec2f I0_coeff, J0_coeff; Vec3f I_1, J_1, I_2, J_2; Matx33f R_1, R_2; Matx33f* R_current; //TODO: do extrapolation or reinit here! Vec3f k; get_row(X_CM.R, 2, k); float Z0 = X_CM.t[2]; Matx33f R_expected = Matx33f::eye(); //Matx33f R_expected = X_CM.R; const int MAX_ITER = 100; const float EPS_THRESHOLD = 1e-4; int i=1; for (; iM01)/Z0; epsilon_2 = k.dot(point_model->M02)/Z0; // vector of scalar products and Vec2f I0_M0i(p[1][0]*(1.0 + epsilon_1) - p[0][0], p[2][0]*(1.0 + epsilon_2) - p[0][0]); Vec2f J0_M0i(p[1][1]*(1.0 + epsilon_1) - p[0][1], p[2][1]*(1.0 + epsilon_2) - p[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 I0_coeff = point_model->P * I0_M0i; J0_coeff = point_model->P * J0_M0i; I0 = I0_coeff[0]*point_model->M01 + I0_coeff[1]*point_model->M02; J0 = J0_coeff[0]*point_model->M01 + J0_coeff[1]*point_model->M02; // calculate u component of I, J float II0 = I0.dot(I0); float IJ0 = I0.dot(J0); float JJ0 = J0.dot(J0); float rho, theta; if (JJ0 == II0) { rho = sqrt(abs(2*IJ0)); theta = -PI/4; if (IJ0<0) theta *= -1; } else { rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); theta = atan( -2*IJ0 / (JJ0-II0) ); if (JJ0 - II0 < 0) theta += PI; theta /= 2; } // construct the two solutions I_1 = I0 + rho*cos(theta)*point_model->u; I_2 = I0 - rho*cos(theta)*point_model->u; J_1 = J0 + rho*sin(theta)*point_model->u; J_2 = J0 - rho*sin(theta)*point_model->u; float norm_const = 1.0/norm(I_1); // all have the same norm // create rotation matrices I_1 *= norm_const; J_1 *= norm_const; I_2 *= norm_const; J_2 *= norm_const; set_row(R_1, 0, I_1); set_row(R_1, 1, J_1); set_row(R_1, 2, I_1.cross(J_1)); set_row(R_2, 0, I_2); set_row(R_2, 1, J_2); set_row(R_2, 2, I_2.cross(J_2)); // the single translation solution Z0 = norm_const * f; // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t()); float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t()); if (R_1_deviation < R_2_deviation) R_current = &R_1; else R_current = &R_2; get_row(*R_current, 2, k); // check for convergence condition if (abs(epsilon_1 - old_epsilon_1) + abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) break; old_epsilon_1 = epsilon_1; old_epsilon_2 = epsilon_2; } X_CM.R = *R_current; X_CM.t[0] = p[0][0] * Z0/f; X_CM.t[1] = p[0][1] * Z0/f; X_CM.t[2] = Z0; qDebug()<<"iter: "<