/* Copyright (c) 2014-2016, Stanislaw Halik <sthalik@misaki.pl> * Permission to use, copy, modify, and/or distribute this * software for any purpose with or without fee is hereby granted, * provided that the above copyright notice and this permission * notice appear in all copies. */ #pragma once #include "export.hpp" #include <type_traits> #include <utility> #include <cmath> namespace { // last param to fool SFINAE into overloading template<int i, int j, int> struct equals { enum { value = i == j }; }; template<int i, int j, int min> struct maybe_add_swizzle { enum { value = (i == 1 || j == 1) && (i >= min || j >= min) }; }; template<int i1, int j1, int i2, int j2> struct is_vector_pair { enum { value = (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1) }; }; template<int i, int j> struct vector_len { enum { value = i > j ? i : j }; }; template<int a, int b, int c, int d> struct is_dim3 { enum { value = (a == 1 && c == 1 && b == 3 && d == 3) || (a == 3 && c == 3 && b == 1 && d == 1) }; enum { P = a == 1 ? 1 : 3 }; enum { Q = a == 1 ? 3 : 1 }; }; template<typename num, int h, int w, typename...ts> struct is_arglist_correct { enum { value = h * w == sizeof...(ts) }; }; } template<typename num, int h_, int w_> class Mat { static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions"); num data[h_][w_]; public: template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type inline operator()(int i) const { return data[i][0]; } template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type inline operator()(int i) const { return data[0][i]; } template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type inline operator()(int i) { return data[i][0]; } template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type inline operator()(int i) { return data[0][i]; } template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type inline operator()(unsigned i) const { return data[i][0]; } template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type inline operator()(unsigned i) const { return data[0][i]; } template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type inline operator()(unsigned i) { return data[i][0]; } template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type inline operator()(unsigned i) { return data[0][i]; } #define OPENTRACK_ASSERT_SWIZZLE static_assert(P == h_ && Q == w_, "") template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num>::type x() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(0); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num>::type y() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(1); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num>::type z() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(2); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num>::type w() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(3); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num&>::type x() { OPENTRACK_ASSERT_SWIZZLE; return operator()(0); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num&>::type y() { OPENTRACK_ASSERT_SWIZZLE; return operator()(1); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num&>::type z() { OPENTRACK_ASSERT_SWIZZLE; return operator()(2); } template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num&>::type w() { OPENTRACK_ASSERT_SWIZZLE; return operator()(3); } // parameters w_ and h_ are rebound so that SFINAE occurs // removing them causes a compile-time error -sh 20150811 template<int R, int S, int P = h_, int Q = w_> typename std::enable_if<is_vector_pair<R, S, P, Q>::value, num>::type norm() const { static_assert(P == h_ && Q == w_, ""); const num val = dot(*this); if (std::fabs(val) < 1e-4) return num(0); else return std::sqrt(val); } template<int R, int S, int P = h_, int Q = w_> typename std::enable_if<is_vector_pair<R, S, P, Q>::value, num>::type dot(const Mat<num, R, S>& p2) const { static_assert(P == h_ && Q == w_, ""); num ret = 0; constexpr int len = vector_len<R, S>::value; for (int i = 0; i < len; i++) ret += operator()(i) * p2(i); return ret; } template<int R, int S, int P = h_, int Q = w_> typename std::enable_if<is_dim3<P, Q, R, S>::value, Mat<num, is_dim3<P, Q, R, S>::P, is_dim3<P, Q, R, S>::Q>>::type cross(const Mat<num, R, S>& b) const { static_assert(P == h_ && Q == w_, ""); decltype(*this)& a = *this; return Mat<num, R, S>(a.y()*b.z() - a.z()*b.y(), a.z()*b.x() - a.x()*b.z(), a.x()*b.y() - a.y()*b.x()); } Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& other) const { Mat<num, h_, w_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] + other.data[j][i]; return ret; } Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& other) const { Mat<num, h_, w_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] - other.data[j][i]; return ret; } Mat<num, h_, w_> operator+(const num& other) const { Mat<num, h_, w_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] + other; return ret; } Mat<num, h_, w_> operator-(const num& other) const { Mat<num, h_, w_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] - other; return ret; } template<int p> Mat<num, h_, p> operator*(const Mat<num, w_, p>& other) const { Mat<num, h_, p> ret; for (int k = 0; k < h_; k++) for (int i = 0; i < p; i++) { ret(k, i) = 0; for (int j = 0; j < w_; j++) ret(k, i) += data[k][j] * other(j, i); } return ret; } inline num operator()(int j, int i) const { return data[j][i]; } inline num& operator()(int j, int i) { return data[j][i]; } inline num operator()(unsigned j, unsigned i) const { return data[j][i]; } inline num& operator()(unsigned j, unsigned i) { return data[j][i]; } template<typename... ts, int h__ = h_, int w__ = w_, typename = typename std::enable_if<is_arglist_correct<num, h__, w__, ts...>::value>::type> Mat(const ts... xs) : data{static_cast<num>(xs)...} { static_assert(h__ == h_ && w__ == w_, ""); } Mat() { for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = num(0); } Mat(const num* mem) { for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = mem[i*h_+j]; } operator num*() { return reinterpret_cast<num*>(data); } operator const num*() const { return reinterpret_cast<const num*>(data); } // XXX add more operators as needed, third-party dependencies mostly // not needed merely for matrix algebra -sh 20141030 template<int h__ = h_> static typename std::enable_if<h_ == w_, Mat<num, h__, h__>>::type eye() { static_assert(h_ == h__, ""); Mat<num, h_, h_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret.data[j][i] = 0; for (int i = 0; i < h_; i++) ret.data[i][i] = 1; return ret; } Mat<num, w_, h_> t() const { Mat<num, w_, h_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(i, j) = data[j][i]; return ret; } }; template<typename num, int h, int w> Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat) { return mat * scalar; } template<typename num, int h_, int w_> Mat<num, h_, w_> operator*(const Mat<num, h_, w_>& self, num other) { Mat<num, h_, w_> ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = self(j, i) * other; return ret; }