/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #ifndef ROTATION_H #define ROTATION_H #include // ---------------------------------------------------------------------------- class Rotation { friend Rotation operator*(const Rotation& A, const Rotation& B); public: Rotation() : a(1.0),b(0.0),c(0.0),d(0.0) {} Rotation(double yaw, double pitch, double roll) { fromEuler(yaw, pitch, roll); } Rotation(double a, double b, double c, double d) : a(a),b(b),c(c),d(d) {} Rotation inv(){ // inverse return Rotation(a,-b,-c,-d); } // conversions // see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles void fromEuler(double yaw, double pitch, double roll) { double sin_phi = sin(roll/2.0); double cos_phi = cos(roll/2.0); double sin_the = sin(pitch/2.0); double cos_the = cos(pitch/2.0); double sin_psi = sin(yaw/2.0); double cos_psi = cos(yaw/2.0); a = cos_phi*cos_the*cos_psi + sin_phi*sin_the*sin_psi; b = sin_phi*cos_the*cos_psi - cos_phi*sin_the*sin_psi; c = cos_phi*sin_the*cos_psi + sin_phi*cos_the*sin_psi; d = cos_phi*cos_the*sin_psi - sin_phi*sin_the*cos_psi; } void Rotation::toEuler(double& yaw, double& pitch, double& roll) { roll = atan2(2.0*(a*b + c*d), 1.0 - 2.0*(b*b + c*c)); pitch = asin(2.0*(a*c - b*d)); yaw = atan2(2.0*(a*d + b*c), 1.0 - 2.0*(c*c + d*d)); } protected: double a,b,c,d; // quaternion coefficients }; Rotation operator*(const Rotation& A, const Rotation& B) { return Rotation(A.a*B.a - A.b*B.b - A.c*B.c - A.d*B.d, // quaternion multiplication A.a*B.b + A.b*B.a + A.c*B.d - A.d*B.c, A.a*B.c - A.b*B.d + A.c*B.a + A.d*B.b, A.a*B.d + A.b*B.c - A.c*B.b + A.d*B.a); } #endif //ROTATION_H