/* Copyright (c) 2013-2015 Stanislaw Halik <sthalik@misaki.pl> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include <vector> #include <cstdio> #include <cmath> #include <algorithm> #include <QMutexLocker> #include "./include/markerdetector.h" #include "ftnoir_tracker_aruco.h" #include "opentrack/plugin-api.hpp" #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/videoio.hpp> #include "opentrack/camera-names.hpp" #include "opentrack-compat/sleep.hpp" typedef struct { int width; int height; } resolution_tuple; static resolution_tuple resolution_choices[] = { { 640, 480 }, { 320, 240 }, { 320, 200 }, { 0, 0 } }; Tracker::Tracker() : stop(false), layout(nullptr), videoWidget(nullptr) { } Tracker::~Tracker() { stop = true; wait(); if (videoWidget) delete videoWidget; if(layout) delete layout; camera.release(); } void Tracker::start_tracker(QFrame* videoframe) { videoframe->show(); videoWidget = new ArucoVideoWidget(videoframe); QHBoxLayout* layout = new QHBoxLayout(); layout->setContentsMargins(0, 0, 0, 0); layout->addWidget(videoWidget); if (videoframe->layout()) delete videoframe->layout(); videoframe->setLayout(layout); videoWidget->show(); start(); for (int i = 0; i < 6; i++) pose[i] = 0; this->layout = layout; } #define HT_PI 3.1415926535 void Tracker::getRT(cv::Matx33d& r_, cv::Vec3d& t_) { QMutexLocker l(&mtx); r_ = r; t_ = t; } void Tracker::run() { int rint = s.resolution; if (rint < 0 || rint >= (int)(sizeof(resolution_choices) / sizeof(resolution_tuple))) rint = 0; resolution_tuple res = resolution_choices[rint]; int fps; switch (static_cast<int>(s.force_fps)) { default: case 0: fps = 0; break; case 1: fps = 30; break; case 2: fps = 60; break; case 3: fps = 125; break; case 4: fps = 200; break; } { QMutexLocker l(&camera_mtx); camera = cv::VideoCapture(camera_name_to_index(s.camera_name)); if (res.width) { camera.set(cv::CAP_PROP_FRAME_WIDTH, res.width); camera.set(cv::CAP_PROP_FRAME_HEIGHT, res.height); } if (fps) camera.set(cv::CAP_PROP_FPS, fps); if (!camera.isOpened()) { qDebug() << "aruco tracker: can't open camera"; return; } } aruco::MarkerDetector detector; detector.setDesiredSpeed(3); cv::Rect last_roi(65535, 65535, 0, 0); auto freq = cv::getTickFrequency(); auto last_time = cv::getTickCount(); double cur_fps = 0; std::vector<int> box_sizes { 5, 7, 9, 11 }; int box_idx = 0; double failed = 0; const double max_failed = 1.25; cv::Vec3d rvec, tvec; cv::Mat intrinsics = cv::Mat::eye(3, 3, CV_32FC1); cv::Mat dist_coeffs = cv::Mat::zeros(5, 1, CV_32FC1); while (!stop) { cv::Mat color; { QMutexLocker l(&camera_mtx); if (!camera.read(color)) continue; } cv::Mat grayscale; cv::cvtColor(color, grayscale, cv::COLOR_RGB2GRAY); const int scale = grayscale.cols > 480 ? 2 : 1; detector.setThresholdParams(box_sizes[box_idx], 5); static constexpr double pi = 3.1415926f; const int w = grayscale.cols, h = grayscale.rows; const double diag = sqrt(w * w + h * h)/w, diag_fov = static_cast<int>(s.fov) * pi / 180.; const double fov = 2.*atan(tan(diag_fov/2.)/sqrt(1. + diag*diag)); const float focal_length_w = .5 * w / tan(.5 * fov); const float focal_length_h = focal_length_w; intrinsics.at<float> (0, 0) = focal_length_w; intrinsics.at<float> (1, 1) = focal_length_h; intrinsics.at<float> (0, 2) = grayscale.cols/2; intrinsics.at<float> (1, 2) = grayscale.rows/2; std::vector< aruco::Marker > markers; const double size_min = 0.02; const double size_max = 0.4; bool roi_valid = false; auto time = cv::getTickCount(); const double dt = (time - last_time) / freq; last_time = time; cur_fps = cur_fps * 0.97 + 0.03 * (dt == 0 ? 0 : 1./dt); if (last_roi.width > 0 && last_roi.height) { detector.setThresholdParams(box_sizes[box_idx], 5); detector.setMinMaxSize(std::max(0.01, size_min * grayscale.cols / last_roi.width), std::min(1.0, size_max * grayscale.cols / last_roi.width)); if (detector.detect(grayscale(last_roi), markers, cv::Mat(), cv::Mat(), -1, false), markers.size() == 1 && markers[0].size() == 4) { failed = std::max(0., failed - dt); auto& m = markers.at(0); for (int i = 0; i < 4; i++) { auto& p = m.at(i); p.x += last_roi.x; p.y += last_roi.y; } roi_valid = true; } } if (!roi_valid) { failed += dt; if (failed > max_failed) { box_idx++; box_idx %= box_sizes.size(); qDebug() << "aruco: box size now" << box_sizes[box_idx]; failed = 0; } detector.setThresholdParams(box_sizes[box_idx], 5); detector.setMinMaxSize(size_min, size_max); detector.detect(grayscale, markers, cv::Mat(), cv::Mat(), -1, false); } if (markers.size() == 1 && markers[0].size() == 4) { const auto& m = markers.at(0); for (int i = 0; i < 4; i++) cv::line(color, m[i], m[(i+1)%4], cv::Scalar(0, 0, 255), scale, 8); } char buf[128]; frame = color.clone(); ::sprintf(buf, "Hz: %d", (int)cur_fps); cv::putText(frame, buf, cv::Point(10, 32), cv::FONT_HERSHEY_PLAIN, scale, cv::Scalar(0, 255, 0), scale*2); if (markers.size() == 1 && markers[0].size() == 4) { const auto& m = markers.at(0); const float size = 40; cv::Mat obj_points(4,3,CV_32FC1); const int x1=1, x2=2, x3=3, x4=0; obj_points.at<float>(x1,0)=-size + s.headpos_x; obj_points.at<float>(x1,1)=-size + s.headpos_y; obj_points.at<float>(x1,2)= 0 + s.headpos_z; obj_points.at<float>(x2,0)=size + s.headpos_x; obj_points.at<float>(x2,1)=-size + s.headpos_y; obj_points.at<float>(x2,2)= 0 + s.headpos_z; obj_points.at<float>(x3,0)=size + s.headpos_x; obj_points.at<float>(x3,1)=size + s.headpos_y; obj_points.at<float>(x3,2)= 0 + s.headpos_z; obj_points.at<float>(x4,0)= -size + s.headpos_x; obj_points.at<float>(x4,1)= size + s.headpos_y; obj_points.at<float>(x4,2)= 0 + s.headpos_z; std::vector<cv::Point2f> img_points = m; if (!cv::solvePnP(obj_points, img_points, intrinsics, dist_coeffs, rvec, tvec, false, cv::SOLVEPNP_ITERATIVE)) goto fail; { std::vector<cv::Point2f> repr2; std::vector<cv::Point3f> centroid; centroid.push_back(cv::Point3f(0, 0, 0)); cv::projectPoints(centroid, rvec, tvec, intrinsics, dist_coeffs, repr2); { auto s = cv::Scalar(255, 0, 255); cv::circle(frame, repr2.at(0), 4, s, -1); } } for (int i = 0; i < 4; i++) { obj_points.at<float>(i, 0) -= s.headpos_x; obj_points.at<float>(i, 1) -= s.headpos_y; obj_points.at<float>(i, 2) -= s.headpos_z; } cv::Mat rvec_, tvec_; cv::solvePnP(obj_points, m, intrinsics, dist_coeffs, rvec_, tvec_, false, cv::SOLVEPNP_ITERATIVE); cv::Mat roi_points = obj_points * c_search_window; std::vector<cv::Point2f> roi_projection(4); cv::projectPoints(roi_points, rvec_, tvec_, intrinsics, dist_coeffs, roi_projection); last_roi = cv::Rect(color.cols-1, color.rows-1, 0, 0); for (int i = 0; i < 4; i++) { auto proj = roi_projection[i]; int min_x = std::min<int>(proj.x, last_roi.x), min_y = std::min<int>(proj.y, last_roi.y); int max_x = std::max<int>(proj.x, last_roi.width), max_y = std::max<int>(proj.y, last_roi.height); last_roi.x = min_x; last_roi.y = min_y; last_roi.width = max_x; last_roi.height = max_y; } if (last_roi.x < 0) last_roi.x = 0; if (last_roi.y < 0) last_roi.y = 0; if (last_roi.width < 0) last_roi.width = 0; if (last_roi.height < 0) last_roi.height = 0; if (last_roi.x >= color.cols-1) last_roi.x = color.cols-1; if (last_roi.width >= color.cols-1) last_roi.width = color.cols-1; if (last_roi.y >= color.rows-1) last_roi.y= color.rows-1; if (last_roi.height >= color.rows-1) last_roi.height = color.rows-1; last_roi.width -= last_roi.x; last_roi.height -= last_roi.y; auto rmat = cv::Matx33d::zeros(); cv::Matx33d m_r(3, 3, CV_64FC1), m_q(3, 3, CV_64FC1); cv::Rodrigues(rvec, rmat); { cv::Vec3d euler = cv::RQDecomp3x3(rmat, m_r, m_q); QMutexLocker lck(&mtx); for (int i = 0; i < 3; i++) pose[i] = tvec(i); pose[Yaw] = euler[1]; pose[Pitch] = -euler[0]; pose[Roll] = euler[2]; r = rmat; t = cv::Vec3d(tvec[0], -tvec[1], tvec[2]); } if (roi_valid) cv::rectangle(frame, last_roi, cv::Scalar(255, 0, 255), 1); } else fail: last_roi = cv::Rect(65535, 65535, 0, 0); if (frame.rows > 0) videoWidget->update_image(frame); } // give opencv time to exit camera threads, etc. portable::sleep(500); } void Tracker::data(double *data) { QMutexLocker lck(&mtx); data[Yaw] = pose[Yaw]; data[Pitch] = pose[Pitch]; data[Roll] = pose[Roll]; data[TX] = pose[TX] * .1; data[TY] = pose[TY] * .1; data[TZ] = pose[TZ] * .1; } TrackerControls::TrackerControls() { tracker = nullptr; calib_timer.setInterval(200); ui.setupUi(this); setAttribute(Qt::WA_NativeWindow, true); ui.cameraName->addItems(get_camera_names()); tie_setting(s.camera_name, ui.cameraName); tie_setting(s.resolution, ui.resolution); tie_setting(s.force_fps, ui.cameraFPS); tie_setting(s.fov, ui.cameraFOV); tie_setting(s.headpos_x, ui.cx); tie_setting(s.headpos_y, ui.cy); tie_setting(s.headpos_z, ui.cz); connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK())); connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel())); connect(ui.btn_calibrate, SIGNAL(clicked()), this, SLOT(toggleCalibrate())); connect(this, SIGNAL(destroyed()), this, SLOT(cleanupCalib())); connect(&calib_timer, SIGNAL(timeout()), this, SLOT(update_tracker_calibration())); connect(ui.camera_settings, SIGNAL(pressed()), this, SLOT(camera_settings())); } void TrackerControls::toggleCalibrate() { if (!calib_timer.isActive()) { s.headpos_x = 0; s.headpos_y = 0; s.headpos_z = 0; calibrator.reset(); calib_timer.start(); } else { cleanupCalib(); auto pos = calibrator.get_estimate(); s.headpos_x = pos(0); s.headpos_y = pos(1); s.headpos_z = pos(2); } } void TrackerControls::cleanupCalib() { if (calib_timer.isActive()) calib_timer.stop(); } void TrackerControls::update_tracker_calibration() { if (calib_timer.isActive() && tracker) { cv::Matx33d r; cv::Vec3d t; tracker->getRT(r, t); calibrator.update(r, t); } } void TrackerControls::doOK() { s.b->save(); this->close(); } void TrackerControls::doCancel() { s.b->reload(); this->close(); } void TrackerControls::camera_settings() { open_camera_settings(tracker ? &tracker->camera : nullptr, s.camera_name, tracker ? &tracker->camera_mtx : nullptr); } OPENTRACK_DECLARE_TRACKER(Tracker, TrackerControls, TrackerDll)