/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_tracker.h" #include <vector> #include <algorithm> #include <cmath> #include <QDebug> const float PI = 3.14159265358979323846f; // ---------------------------------------------------------------------------- static void get_row(const cv::Matx33f& m, int i, cv::Vec3f& v) { v[0] = m(i,0); v[1] = m(i,1); v[2] = m(i,2); } static void set_row(cv::Matx33f& m, int i, const cv::Vec3f& v) { m(i,0) = v[0]; m(i,1) = v[1]; m(i,2) = v[2]; } static bool d_vals_sort(const std::pair<float,int> a, const std::pair<float,int> b) { return a.first < b.first; } void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[], cv::Vec2f d) const { // fit line to orthographically projected points std::vector<std::pair<float,int>> d_vals; // get sort indices with respect to d scalar product for (unsigned i = 0; i<points.size(); ++i) d_vals.push_back(std::pair<float, int>(d.dot(points[i]), i)); std::sort(d_vals.begin(), d_vals.end(), d_vals_sort ); for (unsigned i = 0; i<points.size(); ++i) d_order[i] = d_vals[i].second; } PointTracker::PointTracker() : init_phase(true) { } PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel& model, float f) { PointTracker::PointOrder p; p.points[0] = project(cv::Vec3f(0,0,0), f); p.points[1] = project(model.M01, f); p.points[2] = project(model.M02, f); // set correspondences by minimum distance to projected model point bool point_taken[PointModel::N_POINTS]; for (int i=0; i<PointModel::N_POINTS; ++i) point_taken[i] = false; for (int i=0; i<PointModel::N_POINTS; ++i) { float min_sdist = 0; int min_idx = 0; // find closest point to projected model point i for (int j=0; j<PointModel::N_POINTS; ++j) { cv::Vec2f d = p.points[i]-points[j]; float sdist = d.dot(d); if (sdist < min_sdist || j==0) { min_idx = j; min_sdist = sdist; } } // if one point is closest to more than one model point, fallback if (point_taken[min_idx]) { init_phase = true; return find_correspondences(points, model); } point_taken[min_idx] = true; p.points[i] = points[min_idx]; } return p; } void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout) { PointOrder order; if (t.elapsed_ms() > init_phase_timeout) { t.start(); init_phase = true; } if (!dynamic_pose || init_phase) order = find_correspondences(points, model); else order = find_correspondences_previous(points, model, f); POSIT(model, order, f); init_phase = false; t.start(); } PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, const PointModel& model) { // We do a simple freetrack-like sorting in the init phase... // sort points int point_d_order[PointModel::N_POINTS]; int model_d_order[PointModel::N_POINTS]; cv::Vec2f d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); model.get_d_order(points, point_d_order, d); // calculate d and d_order for simple freetrack-like point correspondence model.get_d_order(std::vector<cv::Vec2f> { cv::Vec2f{0,0}, cv::Vec2f(model.M01[0], model.M01[1]), cv::Vec2f(model.M02[0], model.M02[1]) }, model_d_order, d); // set correspondences PointOrder p; for (int i=0; i<PointModel::N_POINTS; ++i) p.points[model_d_order[i]] = points[point_d_order[i]]; return p; } int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length) { // POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] // we use the same notation as in the paper here // The expected rotation used for resolving the ambiguity in POSIT: // In every iteration step the rotation closer to R_expected is taken cv::Matx33f R_expected = cv::Matx33f::eye(); // initial pose = last (predicted) pose cv::Vec3f k; get_row(R_expected, 2, k); float Z0 = 1000.f; float old_epsilon_1 = 0; float old_epsilon_2 = 0; float epsilon_1 = 1; float epsilon_2 = 1; cv::Vec3f I0, J0; cv::Vec2f I0_coeff, J0_coeff; cv::Vec3f I_1, J_1, I_2, J_2; cv::Matx33f R_1, R_2; cv::Matx33f* R_current; const int MAX_ITER = 100; const float EPS_THRESHOLD = 1e-4; const cv::Vec2f* order = order_.points; int i=1; for (; i<MAX_ITER; ++i) { epsilon_1 = k.dot(model.M01)/Z0; epsilon_2 = k.dot(model.M02)/Z0; // vector of scalar products <I0, M0i> and <J0, M0i> cv::Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0], order[2][0]*(1.0 + epsilon_2) - order[0][0]); cv::Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1], order[2][1]*(1.0 + epsilon_2) - order[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 I0_coeff = model.P * I0_M0i; J0_coeff = model.P * J0_M0i; I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; // calculate u component of I, J float II0 = I0.dot(I0); float IJ0 = I0.dot(J0); float JJ0 = J0.dot(J0); float rho, theta; if (JJ0 == II0) { rho = std::sqrt(std::abs(2*IJ0)); theta = -PI/4; if (IJ0<0) theta *= -1; } else { rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); theta = atan( -2*IJ0 / (JJ0-II0) ); if (JJ0 - II0 < 0) theta += PI; theta /= 2; } // construct the two solutions I_1 = I0 + rho*cos(theta)*model.u; I_2 = I0 - rho*cos(theta)*model.u; J_1 = J0 + rho*sin(theta)*model.u; J_2 = J0 - rho*sin(theta)*model.u; float norm_const = 1.0/cv::norm(I_1); // all have the same norm // create rotation matrices I_1 *= norm_const; J_1 *= norm_const; I_2 *= norm_const; J_2 *= norm_const; set_row(R_1, 0, I_1); set_row(R_1, 1, J_1); set_row(R_1, 2, I_1.cross(J_1)); set_row(R_2, 0, I_2); set_row(R_2, 1, J_2); set_row(R_2, 2, I_2.cross(J_2)); // the single translation solution Z0 = norm_const * focal_length; // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t()); float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t()); if (R_1_deviation < R_2_deviation) R_current = &R_1; else R_current = &R_2; get_row(*R_current, 2, k); // check for convergence condition if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD) break; old_epsilon_1 = epsilon_1; old_epsilon_2 = epsilon_2; } // apply results X_CM.R = *R_current; X_CM.t[0] = order[0][0] * Z0/focal_length; X_CM.t[1] = order[0][1] * Z0/focal_length; X_CM.t[2] = Z0; //qDebug() << "iter:" << i; return i; } cv::Vec2f PointTracker::project(const cv::Vec3f& v_M, float f) { cv::Vec3f v_C = X_CM * v_M; return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]); }