/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #ifndef POINTTRACKER_H #define POINTTRACKER_H #include <memory> #include <opencv2/opencv.hpp> #include <list> // ---------------------------------------------------------------------------- // Afine frame trafo class FrameTrafo { public: FrameTrafo() : R(cv::Matx33f::eye()), t(0,0,0) {} FrameTrafo(const cv::Matx33f& R, const cv::Vec3f& t) : R(R),t(t) {} cv::Matx33f R; cv::Vec3f t; }; inline FrameTrafo operator*(const FrameTrafo& X, const FrameTrafo& Y) { return FrameTrafo(X.R*Y.R, X.R*Y.t + X.t); } inline cv::Vec3f operator*(const FrameTrafo& X, const cv::Vec3f& v) { return X.R*v + X.t; } // ---------------------------------------------------------------------------- // Describes a 3-point model // nomenclature as in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] class PointModel { friend class PointTracker; public: static const int N_POINTS = 3; PointModel(cv::Vec3f M01, cv::Vec3f M02); const cv::Vec3f& get_M01() const { return M01; }; const cv::Vec3f& get_M02() const { return M02; }; protected: cv::Vec3f M01; // M01 in model frame cv::Vec3f M02; // M02 in model frame cv::Vec3f u; // unit vector perpendicular to M01,M02-plane cv::Matx22f P; cv::Vec2f d; // discrimant vector for point correspondence int d_order[3]; // sorting of projected model points with respect to d scalar product void get_d_order(const std::vector<cv::Vec2f>& points, int d_order[]) const; }; // ---------------------------------------------------------------------------- // Tracks a 3-point model // implementing the POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] class PointTracker { public: PointTracker(); // track the pose using the set of normalized point coordinates (x pos in range -0.5:0.5) // f : (focal length)/(sensor width) // dt : time since last call bool track(const std::vector<cv::Vec2f>& points, float f, float dt); std::auto_ptr<PointModel> point_model; bool dynamic_pose_resolution; float dt_reset; FrameTrafo get_pose() const { return X_CM; } void reset(); protected: inline cv::Vec2f project(const cv::Vec3f& v_M, float f) { cv::Vec3f v_C = X_CM * v_M; return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]); } bool find_correspondences(const std::vector<cv::Vec2f>& points, float f); cv::Vec2f p[PointModel::N_POINTS]; // the points in model order cv::Vec2f p_exp[PointModel::N_POINTS]; // the expected point positions void predict(float dt); void update_velocities(float dt); void reset_velocities(); int POSIT(float f); // The POSIT algorithm, returns the number of iterations bool init_phase; float dt_valid; // time since last valid tracking result cv::Vec3f v_t; // velocities cv::Vec3f v_r; FrameTrafo X_CM; // trafo from model to camera FrameTrafo X_CM_old; }; #endif //POINTTRACKER_H