/* Copyright (c) 2012-2015 Stanislaw Halik <sthalik@misaki.pl>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

/*
 * this file appeared originally in facetracknoir, was rewritten completely
 * following opentrack fork.
 *
 * originally written by Wim Vriend.
 */

#include "compat/nan.hpp"
#include "compat/sleep.hpp"
#include "compat/math.hpp"
#include "compat/meta.hpp"

#include "pipeline.hpp"

#include <cmath>
#include <algorithm>
#include <cstdio>

#ifdef _WIN32
#   include <windows.h>
#endif

using namespace euler;
using namespace time_units;
using namespace gui_tracker_impl;

static constexpr inline double r2d = 180. / M_PI;
static constexpr inline double d2r = M_PI / 180.;

reltrans::reltrans() {}

euler_t reltrans::rotate(const rmat& rmat, const euler_t& xyz,
                         bool disable_tx, bool disable_ty, bool disable_tz) const
{
    enum { tb_Z, tb_X, tb_Y };

    // TY is really yaw axis. need swapping accordingly.
    // sign changes are due to right-vs-left handedness of coordinate system used
    const euler_t ret = rmat * euler_t(xyz(TZ), -xyz(TX), -xyz(TY));

    euler_t output;

    if (disable_tz)
        output(TZ) = xyz(TZ);
    else
        output(TZ) = ret(tb_Z);

    if (disable_ty)
        output(TY) = xyz(TY);
    else
        output(TY) = -ret(tb_Y);

    if (disable_tx)
        output(TX) = xyz(TX);
    else
        output(TX) = -ret(tb_X);

    return output;
}

Pose reltrans::apply_pipeline(reltrans_state state, const Pose& value, const Mat<bool, 6, 1>& disable)
{
    if (state != reltrans_disabled)
    {
        euler_t rel { value(TX), value(TY), value(TZ) };

        {
            bool tcomp_in_zone_ = progn(
                if (state == reltrans_non_center)
                {
                    const bool yaw_in_zone = std::fabs(value(Yaw)) < 20;
                    const bool pitch_in_zone = std::fabs(value(Pitch)) < 20;
                    const bool roll_in_zone = std::fabs(value(Roll)) < 7;

                    return !(yaw_in_zone && pitch_in_zone && roll_in_zone);
                }
                else
                    return true;
            );

            if (!cur && in_zone != tcomp_in_zone_)
            {
                //qDebug() << "reltrans-interp: START" << tcomp_in_zone_;
                cur = true;
                interp_timer.start();
            }

            in_zone = tcomp_in_zone_;
        }

        // only when looking behind or downward
        if (in_zone)
        {
            const double tcomp_c[] = {
                double(!disable(Yaw)),
                double(!disable(Pitch)),
                double(!disable(Roll)),
            };

            const rmat R = euler_to_rmat(euler_t(value(Yaw)   * d2r * tcomp_c[0],
                                                 value(Pitch) * d2r * tcomp_c[1],
                                                 value(Roll)  * d2r * tcomp_c[2]));

            rel = rotate(R,
                         rel,
                         disable(TX),
                         disable(TY),
                         disable(TZ));
        }

        if (cur)
        {
            const double dt = interp_timer.elapsed_seconds();
            interp_timer.start();

            constexpr double RC = .1;
            const double alpha = dt/(dt+RC);

            constexpr double eps = .05;

            interp_pos = interp_pos * (1-alpha) + rel * alpha;

            const euler_t tmp = rel - interp_pos;
            rel = interp_pos;
            const double delta = std::fabs(tmp(0)) + std::fabs(tmp(0)) + std::fabs(tmp(0));

            //qDebug() << "reltrans-interp: delta" << delta;

            if (delta < eps)
            {
                //qDebug() << "reltrans-interp: STOP";
                cur = false;
            }
        }
        else
        {
            interp_pos = rel;
        }

        return { rel(0), rel(1), rel(2), value(Yaw), value(Pitch), value(Roll) };
    }
    else
    {
        cur = false;
        in_zone = false;

        return value;
    }
}

pipeline::pipeline(Mappings& m, runtime_libraries& libs, event_handler& ev, TrackLogger& logger) :
    m(m),
    ev(ev),
    libs(libs),
    logger(logger)
{
}

pipeline::~pipeline()
{
    requestInterruption();
    wait();
}

double pipeline::map(double pos, Map& axis)
{
    bool altp = (pos < 0) && axis.opts.altp;
    axis.spline_main.set_tracking_active( !altp );
    axis.spline_alt.set_tracking_active( altp );
    auto& fc = altp ? axis.spline_alt : axis.spline_main;
    return double(fc.get_value(pos));
}

template<int u, int w>
static bool is_nan(const dmat<u,w>& r)
{
    for (int i = 0; i < u; i++)
        for (int j = 0; j < w; j++)
            if (nanp(r(i, j)))
                return true;

    return false;
}

constexpr double pipeline::c_mult;
constexpr double pipeline::c_div;
template<typename x, typename y, typename... xs>
static inline bool nan_check_(const x& datum, const y& next, const xs&... rest)
{
    return !is_nan(datum) && nan_check_(next, rest...);
}

template<typename x>
static inline bool nan_check_(const x& datum)
{
    return !is_nan(datum);
}

template<typename>
static bool nan_check_() = delete;

static never_inline
void emit_nan_check_msg(const char* text, int line)
{
    once_only(qDebug()  << "nan check failed"
                        << "line:" << text
                        << "for:" << line);
}

#define nan_check(...) \
    do                                                      \
    {                                                       \
        if (!nan_check_(__VA_ARGS__))                       \
        {                                                   \
            emit_nan_check_msg(#__VA_ARGS__, __LINE__);     \
            goto nan;                                       \
        }                                                   \
    } while (false)

void pipeline::logic()
{
    using namespace euler;
    using EV = event_handler::event_ordinal;

    logger.write_dt();
    logger.reset_dt();

    // we must center prior to getting data
    const bool center_ordered = get(f_center) && tracking_started;
    set(f_center, false);
    const bool own_center_logic = center_ordered && libs.pTracker->center();

    Pose value, raw;

    {
        Pose tmp;
        libs.pTracker->data(tmp);
        nan_check(tmp);
        ev.run_events(EV::ev_raw, tmp);

        if (get(f_enabled_p) ^ !get(f_enabled_h))
            for (int i = 0; i < 6; i++)
                newpose(i) = tmp(i);
    }

    bool disabled[6];

    for (int i = 0; i < 6; i++)
    {
        auto& axis = m(i);
        int k = axis.opts.src;
        disabled[i] = k == 6;
        if (k < 0 || k >= 6)
            value(i) = 0;
        else
            value(i) = newpose(k);
        raw(i) = newpose(i);
    }

    // hatire, udp, and freepie trackers can mess up here
    for (unsigned i = 3; i < 6; i++)
    {
        using std::fmod;
        using std::copysign;
        using std::fabs;

        value(i) = fmod(value(i), 360);

        const double x = value(i);
        if (fabs(x) - 1e-2 > 180)
            value(i) = fmod(x + copysign(180, x), 360) - copysign(180, x);
        else
            value(i) = clamp(x, -180, 180);
    }

    logger.write_pose(raw); // raw

    // TODO split this function, it's too big

    {
        euler_t tmp = d2r * euler_t(&value[Yaw]);
        scaled_rotation.rotation = euler_to_rmat(c_div * tmp);
        real_rotation.rotation = euler_to_rmat(tmp);
    }

    if (!tracking_started)
    {
        for (int i = 0; i < 6; i++)
            if (std::fabs(newpose(i)) != 0)
            {
                tracking_started = true;
                break;
            }

        if (tracking_started && s.center_at_startup)
        {
            set(f_center, true);
        }
    }

    if (center_ordered)
    {
        if (libs.pFilter)
            libs.pFilter->center();

        if (own_center_logic)
        {
            scaled_rotation.rot_center = rmat::eye();
            real_rotation.rot_center = rmat::eye();

            t_center = euler_t();
        }
        else
        {
            real_rotation.rot_center = real_rotation.rotation.t();
            scaled_rotation.rot_center = scaled_rotation.rotation.t();

            t_center = euler_t(&value(TX));
        }
    }

    {
        rmat rotation = scaled_rotation.rotation;
        euler_t pos = euler_t(&value[TX]) - t_center;

        //switch (s.center_method)
        switch (1)
        {
        case 0:
            // inertial
            rotation = scaled_rotation.rot_center * rotation;
        break;

        default:
        case 1:
            // camera
            rotation = rotation * scaled_rotation.rot_center;
            pos = rel.rotate(real_rotation.rot_center, pos, false, false, false);
        break;
        }

        euler_t rot = r2d * c_mult * rmat_to_euler(rotation);

        for (int i = 0; i < 3; i++)
        {
            // don't invert after t_compensate
            // inverting here doesn't break centering

            if (m(i+3).opts.invert)
                rot(i) = -rot(i);
            if (m(i).opts.invert)
                pos(i) = -pos(i);
        }

        for (int i = 0; i < 3; i++)
        {
            value(i) = pos(i);
            value(i+3) = rot(i);
        }
    }

    logger.write_pose(value); // "corrected" - after various transformations to account for camera position

    ev.run_events(EV::ev_before_filter, value);

    {
        {
            Pose tmp(value);

            // nan/inf values will corrupt filter internal state
            if (libs.pFilter)
                libs.pFilter->filter(tmp, value);

            nan_check(value);

            logger.write_pose(value); // "filtered"
        }
    }

    {
        ev.run_events(EV::ev_before_mapping, value);

        {
            euler_t neck;

            if (s.neck_enable)
            {
                double nz = -s.neck_z;

                if (nz != 0)
                {
                    const rmat R = euler_to_rmat(
                                       euler_t(value(Yaw)   * d2r,
                                               value(Pitch) * d2r,
                                               value(Roll)  * d2r));
                    neck = rel.rotate(R, { 0, 0, nz }, false, false, false);
                    neck(TZ) = neck(TZ) - nz;

                    nan_check(neck);
                }
            }

            // CAVEAT rotation only, due to tcomp
            for (int i = 3; i < 6; i++)
                value(i) = map(value(i), m(i));

            nan_check(value);

            value = rel.apply_pipeline(s.reltrans_mode, value, {
                !!s.reltrans_disable_src_yaw, !!s.reltrans_disable_src_pitch, !!s.reltrans_disable_src_roll,
                !!s.reltrans_disable_tx, !!s.reltrans_disable_ty, !!s.reltrans_disable_tz
            });

            for (int i = 0; i < 3; i++)
                value(i) += neck(i);
        }

        // relative translation can move it
        for (unsigned k = 0; k < 6; k++)
            if (disabled[k])
                value(k) = 0;
    }

    // CAVEAT translation only, due to tcomp
    for (int i = 0; i < 3; i++)
        value(i) = map(value(i), m(i));

    nan_check(value);

    goto ok;

nan:
    {
        QMutexLocker foo(&mtx);

        value = output_pose;
        raw = raw_6dof;

        // for widget last value display
        for (int i = 0; i < 6; i++)
            (void) map(raw_6dof(i), m(i));
    }

ok:

    if (get(f_zero))
        for (int i = 0; i < 6; i++)
            value(i) = 0;

    // custom zero position
    for (int i = 0; i < 6; i++)
        value(i) += m(i).opts.zero * (m(i).opts.invert ? -1 : 1);

    ev.run_events(EV::ev_finished, value);

    libs.pProtocol->pose(value);

    QMutexLocker foo(&mtx);
    output_pose = value;
    raw_6dof = raw;

    logger.write_pose(value); // "mapped"

    logger.reset_dt();
    logger.next_line();
}

void pipeline::run()
{
#if defined _WIN32
    const MMRESULT mmres = timeBeginPeriod(1);
#endif

    {
        static constexpr const char* posechannels[6] = { "TX", "TY", "TZ", "Yaw", "Pitch", "Roll" };
        static constexpr const char* datachannels[5] = { "dt", "raw", "corrected", "filtered", "mapped" };
        logger.write(datachannels[0]);
        char buffer[128];
        for (unsigned j = 1; j < 5; ++j)
        {
            for (unsigned i = 0; i < 6; ++i)
            {
                std::sprintf(buffer, "%s%s", datachannels[j], posechannels[i]);
                logger.write(buffer);
            }
        }
        logger.next_line();
    }

    logger.reset_dt();

    t.start();

    while (!isInterruptionRequested())
    {
        logic();

        constexpr ns const_sleep_ms(time_cast<ns>(ms(4)));
        const ns elapsed_nsecs = prog1(t.elapsed<ns>(), t.start());

        if (backlog_time > secs_(3) || backlog_time < secs_(-3))
        {
            qDebug() << "tracker: backlog interval overflow"
                     << time_cast<ms>(backlog_time).count() << "ms";
            backlog_time = backlog_time.zero();
        }

        backlog_time += ns(elapsed_nsecs - const_sleep_ms);

        const int sleep_time_ms = time_cast<ms>(clamp(const_sleep_ms - backlog_time,
                                                      ms::zero(), ms(10))).count();

#if 0
        qDebug() << "sleepy time" << sleep_time_ms
                 << "elapsed" << time_cast<ms>(elapsed_nsecs).count()
                 << "backlog" << time_cast<ms>(backlog_time).count();
#endif

        portable::sleep(sleep_time_ms);
    }

    // filter may inhibit exact origin
    Pose p;
    libs.pProtocol->pose(p);

    for (int i = 0; i < 6; i++)
    {
        m(i).spline_main.set_tracking_active(false);
        m(i).spline_alt.set_tracking_active(false);
    }

#if defined _WIN32
    if (mmres == 0)
        (void) timeEndPeriod(1);
#endif
}

void pipeline::raw_and_mapped_pose(double* mapped, double* raw) const
{
    QMutexLocker foo(&const_cast<pipeline&>(*this).mtx);

    for (int i = 0; i < 6; i++)
    {
        raw[i] = raw_6dof(i);
        mapped[i] = output_pose(i);
    }
}

void pipeline::center() { set(f_center, true); }

void pipeline::set_toggle(bool value) { set(f_enabled_h, value); }
void pipeline::set_zero(bool value) { set(f_zero, value); }

void pipeline::zero() { negate(f_zero); }
void pipeline::toggle_enabled() { negate(f_enabled_p); }


void bits::set(bits::flags flag_, bool val_)
{
    const unsigned flag = unsigned(flag_);
    const unsigned val = unsigned(val_);

    for (;;)
    {
        unsigned b_(b);
        if (b.compare_exchange_weak(b_,
                                    unsigned((b_ & ~flag) | (flag * val)),
                                    std::memory_order_seq_cst,
                                    std::memory_order_seq_cst))
            break;
    }
}

void bits::negate(bits::flags flag_)
{
    const unsigned flag = unsigned(flag_);

    for (;;)
    {
        unsigned b_(b);

        if (b.compare_exchange_weak(b_,
                                    b_ ^ flag,
                                    std::memory_order_seq_cst,
                                    std::memory_order_seq_cst))
            break;
    }
}

bool bits::get(bits::flags flag)
{
    return !!(b & flag);
}

bits::bits() : b(0u)
{
    set(f_center, true);
    set(f_enabled_p, true);
    set(f_enabled_h, true);
    set(f_zero, false);
}