/* Copyright (c) 2012-2015 Stanislaw Halik <sthalik@misaki.pl>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

/*
 * this file appeared originally in facetracknoir, was rewritten completely
 * following opentrack fork.
 *
 * originally written by Wim Vriend.
 */

#include "compat/sleep.hpp"

#include "tracker.h"
#include <cmath>
#include <algorithm>
#include <cstdio>

#if defined(_WIN32)
#   include <windows.h>
#endif

Tracker::Tracker(Mappings &m, SelectedLibraries &libs, TrackLogger &logger) :
    m(m),
    newpose {0,0,0, 0,0,0},
    libs(libs),
    logger(logger),
    centerp(s.center_at_startup),
    enabledp(true),
    zero_(false),
    should_quit(false)
{
}

Tracker::~Tracker()
{
    should_quit = true;
    wait();
}

Tracker::rmat Tracker::get_camera_offset_matrix(double c)
{
    const double off[] =
    {
        d2r * c * (double)-s.camera_yaw,
        d2r * c * (double)-s.camera_pitch,
        d2r * c * (double)-s.camera_roll
    };

    return euler::euler_to_rmat(off);
}

double Tracker::map(double pos, Map& axis)
{
    bool altp = (pos < 0) && axis.opts.altp;
    axis.spline_main.setTrackingActive( !altp );
    axis.spline_alt.setTrackingActive( altp );
    auto& fc = altp ? axis.spline_alt : axis.spline_main;
    return fc.getValue(pos);
}

void Tracker::t_compensate(const rmat& rmat, const euler_t& xyz_, euler_t& output, bool rz)
{
    // TY is really yaw axis. need swapping accordingly.
    const euler_t ret = rmat * euler_t(xyz_(TZ), -xyz_(TX), -xyz_(TY));
    if (!rz)
        output(2) = ret(0);
    else
        output(2) = xyz_(2);
    output(1) = -ret(2);
    output(0) = -ret(1);
}

#include "compat/nan.hpp"

static inline double elide_nan(double value, double def)
{
    if (nanp(value))
    {
        if (nanp(def))
            return 0;
        return def;
    }
    return value;
}

template<int u, int w>
static bool is_nan(const dmat<u,w>& r)
{
    for (int i = 0; i < u; i++)
        for (int j = 0; j < w; j++)
            if (nanp(r(u, w)))
                return true;

    return false;
}

constexpr double Tracker::c_mult;
constexpr double Tracker::c_div;

void Tracker::logic()
{
    using namespace euler;

    logger.write_dt();
    logger.reset_dt();

    Pose value, raw;

    for (int i = 0; i < 6; i++)
    {
        auto& axis = m(i);
        int k = axis.opts.src;
        if (k < 0 || k >= 6)
            value(i) = 0;
        else
            value(i) = newpose[k];
        raw(i) = newpose[i];
    }

    logger.write_pose(raw); // raw

    if (is_nan(raw))
        raw = last_raw;

    // TODO split this function, it's too big

    {
        euler_t tmp = d2r * euler_t(&value[Yaw]);
        scaled_rotation.rotation = euler_to_rmat(c_div * tmp);
        real_rotation.rotation = euler_to_rmat(tmp);
        tait_bryan_to_matrices(c_div * tmp, scaled_rotation.rr, scaled_rotation.ry, scaled_rotation.rp);
    }

    scaled_rotation.camera = get_camera_offset_matrix(c_div);
    real_rotation.camera = get_camera_offset_matrix(1);

    scaled_rotation.rotation = scaled_rotation.camera * scaled_rotation.rotation;
    real_rotation.rotation = real_rotation.camera * real_rotation.rotation;

    bool nanp = is_nan(value) || is_nan(scaled_rotation.rotation) || is_nan(real_rotation.rotation);

    if (!nanp)
    {
        bool can_center = false;

        if (centerp && !nanp)
        {
            for (int i = 0; i < 6; i++)
                if (fabs(newpose[i]) != 0)
                {
                    can_center = true;
                    break;
                }
        }

        if (can_center)
        {

            centerp = false;

            if (libs.pFilter)
                libs.pFilter->center();

            if (libs.pTracker->center())
            {
                scaled_rotation.rotation = scaled_rotation.camera.t();
                real_rotation.rotation = real_rotation.camera.t();

                scaled_rotation.rotation = rmat::eye();
                real_rotation.rotation = rmat::eye();
                scaled_rotation.center_roll = rmat::eye();
                scaled_rotation.center_yaw = rmat::eye();
                scaled_rotation.center_pitch = rmat::eye();
            }
            else
            {
                euler::tait_bryan_to_matrices(rmat_to_euler(scaled_rotation.rotation),
                                              scaled_rotation.center_roll,
                                              scaled_rotation.center_pitch,
                                              scaled_rotation.center_yaw);
#if 0
                euler::tait_bryan_to_matrices(rmat_to_euler(real_rotation.rotation),
                                              real_rotation.center_roll,
                                              real_rotation.center_pitch,
                                              real_rotation.center_yaw);
#endif
                real_rotation.rot_center = real_rotation.rotation.t();
                scaled_rotation.rot_center = scaled_rotation.rotation.t();
            }

            t_center = euler_t(&value(TX));
        }
    }

    {
        rmat rotation;

        switch (s.center_method)
        {
        // inertial
        case 0:
        default:
            //scaled_rotation.rotation = scaled_rotation
            rotation = scaled_rotation.rot_center * scaled_rotation.rotation;
            break;
        // camera
        case 1:
            rotation = scaled_rotation.rotation * scaled_rotation.rot_center;
            break;
        // alternative camera
        case 2:
            rmat cy, cp, cr;
            tait_bryan_to_matrices(rmat_to_euler(scaled_rotation.rotation), cr, cp, cy);

            rmat ry = cy * scaled_rotation.center_yaw.t();
            rmat rp = cp * scaled_rotation.center_pitch.t();
            rmat rr = cr * scaled_rotation.center_roll.t();

            // roll yaw pitch
            rotation = rr * ry * rp;
            break;
        }

        const euler_t rot = r2d * c_mult * rmat_to_euler(rotation);
        euler_t pos = euler_t(&value[TX]) - t_center;

        if (s.use_camera_offset_from_centering)
            t_compensate(real_rotation.rot_center.t() * real_rotation.camera.t(), pos, pos, false);
        else
            t_compensate(real_rotation.camera.t(), pos, pos, false);

        for (int i = 0; i < 3; i++)
        {
            value(i) = pos(i);
            value(i+3) = rot(i);
        }
    }

    logger.write_pose(value); // "corrected" - after various transformations to account for camera position

    // whenever something can corrupt its internal state due to nan/inf, elide the call
    if (is_nan(value))
    {
        nanp = true;
        logger.write_pose(value); // "filtered"
    }
    else
    {
        {
            Pose tmp = value;

            if (libs.pFilter)
                libs.pFilter->filter(tmp, value);
        }
        logger.write_pose(value); // "filtered"

        // CAVEAT rotation only, due to tcomp
        for (int i = 3; i < 6; i++)
            value(i) = map(value(i), m(i));

        for (int i = 0; i < 6; i++)
            value(i) += m(i).opts.zero;

        for (int i = 0; i < 6; i++)
            value(i) *= int(m(i).opts.invert) * -2 + 1;

        if (zero_)
            for (int i = 0; i < 6; i++)
                value(i) = 0;

        if (is_nan(value))
            nanp = true;
    }

    if (s.tcomp_p)
    {
        euler_t value_(value(TX), value(TY), value(TZ));
        t_compensate(euler_to_rmat(euler_t(value(Yaw) * d2r, value(Pitch) * d2r, value(Roll) * d2r)),
                     value_,
                     value_,
                     s.tcomp_tz);
        if (is_nan(value_))
            nanp = true;
        for (int i = 0; i < 3; i++)
            value(i) = value_(i);
    }

    // CAVEAT translation only, due to tcomp
    for (int i = 0; i < 3; i++)
        value(i) = map(value(i), m(i));

    logger.write_pose(value); // "mapped"

    if (nanp)
    {
        value = last_mapped;

        // for widget last value display
        for (int i = 0; i < 6; i++)
            (void) map(value(i), m(i));
    }

    libs.pProtocol->pose(value);

    last_mapped = value;
    last_raw = raw;

    QMutexLocker foo(&mtx);
    output_pose = value;
    raw_6dof = raw;

    logger.reset_dt();
    logger.next_line();
}

void Tracker::run()
{
#if defined(_WIN32)
    (void) timeBeginPeriod(1);
#endif

    setPriority(QThread::HighPriority);

    {
        static constexpr const char* posechannels[6] = { "TX", "TY", "TZ", "Yaw", "Pitch", "Roll" };
        static constexpr const char* datachannels[5] = { "dt", "raw", "corrected", "filtered", "mapped" };
        logger.write(datachannels[0]);
        char buffer[128];
        for (unsigned j = 1; j < 5; ++j)
        {
            for (unsigned i = 0; i < 6; ++i)
            {
                std::sprintf(buffer, "%s%s", datachannels[j], posechannels[i]);
                logger.write(buffer);
            }
        }
        logger.next_line();
    }

    t.start();
    logger.reset_dt();

    while (!should_quit)
    {
        double tmp[6] {0,0,0, 0,0,0};
        libs.pTracker->data(tmp);

        if (enabledp)
            for (int i = 0; i < 6; i++)
                newpose[i] = elide_nan(tmp[i], newpose[i]);

        logic();

        static constexpr long const_sleep_us = 4000;

        using std::max;
        using std::min;

        const long elapsed_usecs = t.elapsed_usecs();
        const long sleep_us = const_sleep_us * 2 - elapsed_usecs;

        const unsigned sleep_time = unsigned(max(1l, min(const_sleep_us * 4, max(1l, (sleep_us + 200l)/1000l))));

        t.start();

        portable::sleep(unsigned(max(1u, sleep_time)));
    }

    {
        // filter may inhibit exact origin
        Pose p;
        libs.pProtocol->pose(p);
    }

#if defined(_WIN32)
    (void) timeEndPeriod(1);
#endif

    for (int i = 0; i < 6; i++)
    {
        m(i).spline_main.setTrackingActive(false);
        m(i).spline_alt.setTrackingActive(false);
    }
}

void Tracker::get_raw_and_mapped_poses(double* mapped, double* raw) const
{
    QMutexLocker foo(&const_cast<Tracker&>(*this).mtx);

    for (int i = 0; i < 6; i++)
    {
        raw[i] = raw_6dof(i);
        mapped[i] = output_pose(i);
    }
}